Abstract

A new design for generating CARS signals and for the detection and processing of these signals is presented and evaluated. The design is based on electronic heterodyning of the CARS spectrum of nitrogen at two selected narrowband frequencies, ratioing the resulting signal strengths, and comparing this ratio with a theoretically derived temperature scale. A reference cell is incorporated into the design for system calibration and for accurate temperature measurements. The spectrometer is found capable of measuring temperature in the submillisecond time scale with an accuracy of 10% in the 1000–2000 K temperature range. A typical result using the HgxCd1−xTe photomixer for T = 1500 K, ΔT = 50 K is a SNR of 21 dB and a data collection rate of 300 Hz.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bechtel, A. Chraplyvy, “Laser Diagnostics of Flames, Combustion Products and Sprays,” Proc. IEEE 70, 658 (1983).
    [CrossRef]
  2. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–310.
  3. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979).
    [CrossRef]
  4. P. D. Maker, R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength,” Phys. Rev. A 137, 801 (1965).
  5. M. Alden, K. A. Fredriksson, S. Wallin, “Application of a Two-Color Dye Laser in CARS Experiments for Fast Determination of Temperatures,” Appl. Opt. 23, 2053 (1984).
    [CrossRef] [PubMed]
  6. R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979)W. M. Tolles, J. W. Nibler, J. R. McDonald, A. B. Harvey, “A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS),” Appl. Spectrosc. 31, 253 (1977).
    [CrossRef]
  7. R. J. Hall, United Technologies Research Center; personal communication (1984).
  8. Specifications of a Quantel YG-580 YAG Laser in Laser and Optronics 1988 Buying Guide—Industrial Directory and Technical Handbook (Gordon Publications, Dover, NJ, 1987), p. 256.
  9. D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas Phase Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
    [CrossRef]
  10. Adapted from a program by R. J. Hall, United Technologies Research Center, Hartford, CT.
  11. M. J. Deen, “The Design and Simulated Performance of a CARS Spectrometer Using Advanced Solid State Detectors,” Final Technical Report to NASA Lewis Research Center, Cleveland, OH (July1985).
  12. P. L. Richards, L. T. Greenberg, “Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter,” Infrared Millimeter Waves 16, 149 (1981).
  13. A. C. Beer, R. K. Willardson, Eds., Semiconductors and Semimetals, Vol. 18 (Academic, New York, 1981).
  14. G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968).
    [CrossRef]
  15. T. Kostiuk, M. J. Mumma, “Remote Sensing by IR Heterodyne Spectroscopy,” Appl. Opt. 22, 2644 (1983).
    [CrossRef] [PubMed]
  16. J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983).
    [CrossRef]
  17. M. M. Abbas, M. J. Mumma, T. Kostiuk, D. Buhl, “Sensitivity Limits of an Infrared Heterodyne Spectrometer for Astrophysical Applications,” Appl. Opt. 15, 427 (1976).
    [CrossRef] [PubMed]
  18. J. P. Rode, “HgCdTe Hybrid Focal Plane,” Infrared Phys. 24, 443 (1984).
    [CrossRef]
  19. Photonics Spectra, 19 (7), 83 (1985).
  20. M. A. Herman, M. Pessa, “Hg1−xCdxTe-Hg1−yCdyTe (0 ≤ x,y ≤ 1) Heterostructure: Properties, Epitaxy and Applications,” J. Appl. Phys. 57, 2671 (85).
  21. B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
    [CrossRef]
  22. K. J. Linden, R. E. Reeder, “Diode Laser Arrays with High Power in the 4 to 5 μm Infrared Region,” Opt. Eng. 23, 685 (1984).
    [CrossRef]
  23. J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979).
    [CrossRef]
  24. K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
    [CrossRef]
  25. Y. R. Shen, Ed., Non-Linear Infrared Generation (SpringerVerlag, New York, 1977).
    [CrossRef]
  26. M. J. Deen, E. D. Thompson, “The Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using N2,” Bull. Am. Phys. Soc. 31, 506 (1986).
  27. M. V. Hogden, J. Warner, “The Temperature Dependence of the Refractive Indices of Pure Lithium Niobate,” Phys. Lett. 22, 243 (1966).
    [CrossRef]
  28. D. R. Bosomworth, “The Far-Infrared Optical Properties of LiNbO3,” Appl. Phys. Lett. 9, 330 (1966).
    [CrossRef]
  29. B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
    [CrossRef]
  30. B. H. Ahn, “Measurement of the Indices of Refraction and Absorption Coefficients of Dielectric Materials in the Millimeter Wave Region,” J. Appl. Phys. 54, 2123 (1983).
    [CrossRef]
  31. M. J. Deen, E. D. Thompson, “Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements,” Technical Digest of Conference on Lasers and Electro-OpticsSan Francisco (Optical Society of America, Washington, DC, 1986), paper TUK39.
  32. N. Piltch, NASA Lewis Research Center, personal communication (1985).
  33. J. H. Freeman, G. M. Hieftje, “A Comparison of Signal-to-Noise Ratios for Near Infrared Detectors,” Appl. Spectrosc. 38, 837 (1984).
    [CrossRef]
  34. L. P. Goss et al., “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
    [CrossRef]
  35. A. C. Eckbreth, “Optical Splitter for Dynamic Range Enhancement of Optical Multichannel Detectors,” Appl. Opt. 22, 2118 (1983).
    [CrossRef] [PubMed]

1986 (1)

M. J. Deen, E. D. Thompson, “The Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using N2,” Bull. Am. Phys. Soc. 31, 506 (1986).

1984 (4)

1983 (8)

L. P. Goss et al., “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

A. C. Eckbreth, “Optical Splitter for Dynamic Range Enhancement of Optical Multichannel Detectors,” Appl. Opt. 22, 2118 (1983).
[CrossRef] [PubMed]

J. H. Bechtel, A. Chraplyvy, “Laser Diagnostics of Flames, Combustion Products and Sprays,” Proc. IEEE 70, 658 (1983).
[CrossRef]

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas Phase Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
[CrossRef]

T. Kostiuk, M. J. Mumma, “Remote Sensing by IR Heterodyne Spectroscopy,” Appl. Opt. 22, 2644 (1983).
[CrossRef] [PubMed]

J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983).
[CrossRef]

B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
[CrossRef]

B. H. Ahn, “Measurement of the Indices of Refraction and Absorption Coefficients of Dielectric Materials in the Millimeter Wave Region,” J. Appl. Phys. 54, 2123 (1983).
[CrossRef]

1981 (1)

P. L. Richards, L. T. Greenberg, “Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter,” Infrared Millimeter Waves 16, 149 (1981).

1979 (3)

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979)W. M. Tolles, J. W. Nibler, J. R. McDonald, A. B. Harvey, “A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS),” Appl. Spectrosc. 31, 253 (1977).
[CrossRef]

J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979).
[CrossRef]

1976 (1)

1975 (1)

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

1973 (1)

K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

1968 (1)

G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968).
[CrossRef]

1966 (2)

M. V. Hogden, J. Warner, “The Temperature Dependence of the Refractive Indices of Pure Lithium Niobate,” Phys. Lett. 22, 243 (1966).
[CrossRef]

D. R. Bosomworth, “The Far-Infrared Optical Properties of LiNbO3,” Appl. Phys. Lett. 9, 330 (1966).
[CrossRef]

1965 (1)

P. D. Maker, R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength,” Phys. Rev. A 137, 801 (1965).

Abbas, M. M.

Ahn, B. H.

B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
[CrossRef]

B. H. Ahn, “Measurement of the Indices of Refraction and Absorption Coefficients of Dielectric Materials in the Millimeter Wave Region,” J. Appl. Phys. 54, 2123 (1983).
[CrossRef]

Alden, M.

Bates, C. D.

B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
[CrossRef]

Bechtel, J. H.

J. H. Bechtel, A. Chraplyvy, “Laser Diagnostics of Flames, Combustion Products and Sprays,” Proc. IEEE 70, 658 (1983).
[CrossRef]

Bonczyk, P. A.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979).
[CrossRef]

Bosomworth, D. R.

D. R. Bosomworth, “The Far-Infrared Optical Properties of LiNbO3,” Appl. Phys. Lett. 9, 330 (1966).
[CrossRef]

Boyd, G. D.

G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968).
[CrossRef]

Buhl, D.

Burkhardt, E. G.

G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968).
[CrossRef]

Chraplyvy, A.

J. H. Bechtel, A. Chraplyvy, “Laser Diagnostics of Flames, Combustion Products and Sprays,” Proc. IEEE 70, 658 (1983).
[CrossRef]

Clark, W. F.

B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
[CrossRef]

Coates, R. J.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Cohen, S. C.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Deen, M. J.

M. J. Deen, E. D. Thompson, “The Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using N2,” Bull. Am. Phys. Soc. 31, 506 (1986).

M. J. Deen, E. D. Thompson, “Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements,” Technical Digest of Conference on Lasers and Electro-OpticsSan Francisco (Optical Society of America, Washington, DC, 1986), paper TUK39.

M. J. Deen, “The Design and Simulated Performance of a CARS Spectrometer Using Advanced Solid State Detectors,” Final Technical Report to NASA Lewis Research Center, Cleveland, OH (July1985).

DiNardo, A. J.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Optical Splitter for Dynamic Range Enhancement of Optical Multichannel Detectors,” Appl. Opt. 22, 2118 (1983).
[CrossRef] [PubMed]

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–310.

Fredriksson, K. A.

Freeman, J. H.

Goss, L. P.

L. P. Goss et al., “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Greenberg, L. T.

P. L. Richards, L. T. Greenberg, “Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter,” Infrared Millimeter Waves 16, 149 (1981).

Greenhalgh, D. A.

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas Phase Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
[CrossRef]

Hall, R. J.

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979)W. M. Tolles, J. W. Nibler, J. R. McDonald, A. B. Harvey, “A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS),” Appl. Spectrosc. 31, 253 (1977).
[CrossRef]

R. J. Hall, United Technologies Research Center; personal communication (1984).

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–310.

Herman, M. A.

M. A. Herman, M. Pessa, “Hg1−xCdxTe-Hg1−yCdyTe (0 ≤ x,y ≤ 1) Heterostructure: Properties, Epitaxy and Applications,” J. Appl. Phys. 57, 2671 (85).

Hieftje, G. M.

Hogden, M. V.

M. V. Hogden, J. Warner, “The Temperature Dependence of the Refractive Indices of Pure Lithium Niobate,” Phys. Lett. 22, 243 (1966).
[CrossRef]

Hunneman, R. H.

J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979).
[CrossRef]

Kostiuk, T.

Linden, K. J.

K. J. Linden, R. E. Reeder, “Diode Laser Arrays with High Power in the 4 to 5 μm Infrared Region,” Opt. Eng. 23, 685 (1984).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength,” Phys. Rev. A 137, 801 (1965).

Maki, A. G.

J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983).
[CrossRef]

McElroy, J. H.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Morris, J. R.

K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

Mumma, M. J.

Pessa, M.

M. A. Herman, M. Pessa, “Hg1−xCdxTe-Hg1−yCdyTe (0 ≤ x,y ≤ 1) Heterostructure: Properties, Epitaxy and Applications,” J. Appl. Phys. 57, 2671 (85).

Petersen, F. R.

J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983).
[CrossRef]

Peyton, B. J.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Piltch, N.

N. Piltch, NASA Lewis Research Center, personal communication (1985).

Reeder, R. E.

K. J. Linden, R. E. Reeder, “Diode Laser Arrays with High Power in the 4 to 5 μm Infrared Region,” Opt. Eng. 23, 685 (1984).
[CrossRef]

Richards, P. L.

P. L. Richards, L. T. Greenberg, “Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter,” Infrared Millimeter Waves 16, 149 (1981).

K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

Rode, J. P.

J. P. Rode, “HgCdTe Hybrid Focal Plane,” Infrared Phys. 24, 443 (1984).
[CrossRef]

Seely, J. S.

J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979).
[CrossRef]

Shen, Y. R.

K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

Shurtz, R. R.

B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength,” Phys. Rev. A 137, 801 (1965).

Thompson, E. D.

M. J. Deen, E. D. Thompson, “The Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using N2,” Bull. Am. Phys. Soc. 31, 506 (1986).

M. J. Deen, E. D. Thompson, “Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements,” Technical Digest of Conference on Lasers and Electro-OpticsSan Francisco (Optical Society of America, Washington, DC, 1986), paper TUK39.

Verdieck, J. F.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979).
[CrossRef]

Wallin, S.

Warner, J.

M. V. Hogden, J. Warner, “The Temperature Dependence of the Refractive Indices of Pure Lithium Niobate,” Phys. Lett. 22, 243 (1966).
[CrossRef]

Wells, J. S.

J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983).
[CrossRef]

Whatley, A.

J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979).
[CrossRef]

Yang, K. H.

K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

D. R. Bosomworth, “The Far-Infrared Optical Properties of LiNbO3,” Appl. Phys. Lett. 9, 330 (1966).
[CrossRef]

K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

Appl. Spectrosc. (1)

Bull. Am. Phys. Soc. (1)

M. J. Deen, E. D. Thompson, “The Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using N2,” Bull. Am. Phys. Soc. 31, 506 (1986).

Combust. Flame (1)

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979)W. M. Tolles, J. W. Nibler, J. R. McDonald, A. B. Harvey, “A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS),” Appl. Spectrosc. 31, 253 (1977).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968).
[CrossRef]

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Infrared Millimeter Waves (1)

P. L. Richards, L. T. Greenberg, “Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter,” Infrared Millimeter Waves 16, 149 (1981).

Infrared Phys. (2)

J. P. Rode, “HgCdTe Hybrid Focal Plane,” Infrared Phys. 24, 443 (1984).
[CrossRef]

J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979).
[CrossRef]

J. Appl. Phys. (3)

B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983).
[CrossRef]

B. H. Ahn, “Measurement of the Indices of Refraction and Absorption Coefficients of Dielectric Materials in the Millimeter Wave Region,” J. Appl. Phys. 54, 2123 (1983).
[CrossRef]

M. A. Herman, M. Pessa, “Hg1−xCdxTe-Hg1−yCdyTe (0 ≤ x,y ≤ 1) Heterostructure: Properties, Epitaxy and Applications,” J. Appl. Phys. 57, 2671 (85).

J. Mol. Spectrosc. (1)

J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983).
[CrossRef]

J. Raman Spectrosc (1)

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas Phase Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
[CrossRef]

Opt. Eng. (1)

K. J. Linden, R. E. Reeder, “Diode Laser Arrays with High Power in the 4 to 5 μm Infrared Region,” Opt. Eng. 23, 685 (1984).
[CrossRef]

Phys. Lett. (1)

M. V. Hogden, J. Warner, “The Temperature Dependence of the Refractive Indices of Pure Lithium Niobate,” Phys. Lett. 22, 243 (1966).
[CrossRef]

Phys. Rev. A (1)

P. D. Maker, R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength,” Phys. Rev. A 137, 801 (1965).

Proc. IEEE (1)

J. H. Bechtel, A. Chraplyvy, “Laser Diagnostics of Flames, Combustion Products and Sprays,” Proc. IEEE 70, 658 (1983).
[CrossRef]

Prog. Energy Comb. Sci. (1)

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

L. P. Goss et al., “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Other (10)

M. J. Deen, E. D. Thompson, “Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements,” Technical Digest of Conference on Lasers and Electro-OpticsSan Francisco (Optical Society of America, Washington, DC, 1986), paper TUK39.

N. Piltch, NASA Lewis Research Center, personal communication (1985).

Y. R. Shen, Ed., Non-Linear Infrared Generation (SpringerVerlag, New York, 1977).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–310.

R. J. Hall, United Technologies Research Center; personal communication (1984).

Specifications of a Quantel YG-580 YAG Laser in Laser and Optronics 1988 Buying Guide—Industrial Directory and Technical Handbook (Gordon Publications, Dover, NJ, 1987), p. 256.

Adapted from a program by R. J. Hall, United Technologies Research Center, Hartford, CT.

M. J. Deen, “The Design and Simulated Performance of a CARS Spectrometer Using Advanced Solid State Detectors,” Final Technical Report to NASA Lewis Research Center, Cleveland, OH (July1985).

A. C. Beer, R. K. Willardson, Eds., Semiconductors and Semimetals, Vol. 18 (Academic, New York, 1981).

Photonics Spectra, 19 (7), 83 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy level diagram of the CARS wave generated by a vibrational–rotational Q-branch transition.

Fig. 2
Fig. 2

Variation of relative CARS intensities with temperature between 1000 and 2000 K in steps of 100 K.

Fig. 3
Fig. 3

Block diagram of the proposed CARS signal generation system.

Fig. 4
Fig. 4

Block diagram of frequency downconversion, mixing, and postdetection of CARS signals.

Fig. 5
Fig. 5

Temperature sensitivity curves showing the variation of the ratio function and SNR with temperature for (a) BIF = 0.5 GHz and (b) BIF = 1.0 GHz. The CARS signals at 21110.7 cm−1 and at 21124.2 cm−1 correspond to the J = 30 and J = 12 rotational states in the ground state vibrational band ν = 0.

Fig. 6
Fig. 6

Variation of the maximum data collection rate and SNR with temperature for the system with BIF = 1.0 GHz.

Fig. 7
Fig. 7

Temperature accuracy vs the system operational frequency for sample temperatures of 1000 and 2000 K and for BIF = 1.0 GHz.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P 3 ( ω , T ) ( ω p π c ) 2 ( 4 π 2 ω 3 c 2 ) 2 P 1 ( ω p ) d ω p × P 2 ( ω p δ ) P 1 ( ω δ ) | χ | 2 d δ ,
P 3 ( ω , T ) ( ω p π c ) 2 ( 4 π 2 ω 3 c 2 ) 2 P 1 ( ω p ) P 2 ( ω p δ ) P 1 ( ω δ ) | χ | 2 d δ  ,
χ = 2 π N h [ 2 t α t 2 Δ ρ t ( 0 ) 2 Δ ω t i Γ t i t α t i Δ ω t + 0.5 Γ t s γ t s α s Δ ρ s ( 0 ) i Δ ω s + 0.5 Γ s } + χ N R .
d 3 = ( d p 2 d s 2 2 d s 2   +   d p 2 ) 1 / 2  ,
NEP = 1 N i h f i η ( 1 + k η h f i G i ) ( T m + T IF i ) ( B IF B o ) 1 / 2  ,
T IF i = T IF ( R IF / 4 R o i + R o i / 4 R IF + 0.5 )  ,
G i = η e I o i 2 h f i G d ( 1 + f i 2 / f c 2 ) 1  ,
I o i = η e P l o / h f i ,
R o i = ( 1 + ω 2 R s 2 C d 2 ) ( G d + ω i 2 R d C d 2 ) 1  ,
f c = ( 2 π C d ) 1 ( G d / R s ) 1 / 2  ,
P 1 ( ω 30 ) = T ( ω 30 ) P 30   ( ω 30 , T ) d ω 30  ,
P 2   ( ω 31 ) = T ( ω 31 ) P 31 ( ω 31 , T ) d ω 31  ,
R ( ω , T ) = P 1 ( ω 30 ) P 2 ( ω 31 ) .
P 30 ( ω 30 , T ) = 32 c 2 A ( μ 0 0 ) 1 / 2 [ ω 30 ( 2 d ) 1 ] 2 P ( ω 30 , T ) P ( ω l o ) { [ n ( ω 30 ) + 1 ] [ n ( ω l o ) + 1 ] [ n ( ω 31 ) + 1 ] } 2 sinc 2 ( Δ k l 2 )
= 5.9 × 10 12 [ f ( n 30 + 1 ) ( n l o +   1 ) ( n 31 +   1 ) ] 2 P ω 30 P ω l o A sinc 2 ( Δ k l 2 )  ,
SNR ( ω 30 ) = B IF P 30 ( ω 30 , T ) T ( ω 30 ) d ω 30 NEP  ,
P  max  ( ω 30 , T ) = B IF P ( ω 30 , T ) T ( ω 30 ) d ω   + NEP ( ω 30 , T )  ,
P  min  ( ω 30 , T ) = B IF P ( ω 30 , T ) T ( ω 30 ) d ω NEP ( ω 30 , T )  ,
Δ T T = R  max  R  min  R ,
pump energy = 200 mJ ; lens focal length = 50 cm ; Stokes energy = 40 mJ ; P l o ( LiNbO 3 ) = 300 kW; focused beam diameter = 0.5 mm; Δ ω p = 0.05 cm −1  ; Δ ω s > 1 cm −1 ;
P l o = 2 mW ; T IF = 50 K ; η = 0.5; T m = 300 K ; G d = 0.01 Ω −1 ; R L = 50 Ω ; R s = 3 Ω ; C d = 10 pF .
d eff = 6.25 × 10 −12 m / V ; l = 0.3 cm ; damage threshold = 80 300 MW / cm 2 ; n   ~   2.3612 .

Metrics