Abstract

A spectrophone utilizing a resonant cylindrical cavity and operated by driving the first azimuthal mode of the cavity has been developed for the study of weak absorption lines of gases at pressures from 100 to 1300 Torr. Presented are the acoustic resonant amplification factor as a function of pressure, and a description of the noise sources inherent in this spectrophone. An example is given of the optical frequency resolution resulting when this spectrophone is used in conjunction with a tunable ring dye laser as a high resolution spectrometer.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “On the Production of Sound by Light,” Am. J. Sci. 20, 305 (1880).
  2. A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510 (1881).
    [CrossRef]
  3. J. Tyndall, “Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter,” Proc. R. Soc. London 31, 307 (1881).
    [CrossRef]
  4. W. C. Roentgen, “On Tones Produced by the Intermittent Irradiation of a Gas,” Philos. Mag. 11, 308 (1881).
    [CrossRef]
  5. W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).
  6. E. L. Kerr, J. G. Atwood, “The Laser Illuminated Absorptivity Spectrophone: A Method for Measurement of Weak Absorptivity in Gases at Laser Wavelengths,” Appl. Opt. 7, 915 (1968).
    [CrossRef] [PubMed]
  7. L. G. Rosengren, “Optimal Optoacoustic Detector Design,” Appl. Opt. 14, 1960 (1975).
    [CrossRef] [PubMed]
  8. G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
    [CrossRef]
  9. A. C. Tam, “Applications of Sensing Techniques,” Rev. Mod. Phys. 58, 381 (1986).
    [CrossRef]
  10. V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Berlin, 1986).
  11. Y. Pao, Ed. Optoacoustic Spectroscopy and Detection (Academic, New York, 1977).
  12. V. V. Zuev, Y. N. Ponomarev, A. M. Solodov, B. A. Tikhomirov, O. A. Romanovsky, “Influence of the Shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by the Differential-Absorption Method,” Opt. Lett. 10, 318 (1985).
    [CrossRef] [PubMed]
  13. J. Bosenberg, “Measurements of the Pressure Shift of Water Vapor Absorption Lines by Simultaneous Photoacoustic Spectroscopy,” Appl. Opt. 24, 3531 (1985).
    [CrossRef] [PubMed]
  14. Y. N. Ponomarev, B. A. Tikhomirov, ”Measurement of H2O Absorption-Line-Center Shift due to Pressure in a Two-Channel Optoacoustic Spectrometer,” Opt. Spectrosc. 58, 580 (1985).
  15. V. D. Galkin, “Line Shifts in the A Oxygen Band as a Function of the Pressure,” Opt. Spectrosc. 35, 367 (1973).
  16. V. D. Galkin, “Pressure-Induced Line Shift in the (0,0) b1Σg+−X3Σg− Band of Oxygen,” Opt. Spectrosc. 46, 106 (1979).
  17. T. G. Adiks, V. I. Dianov-Klokov, “Shock Shift of Lines in the 0.762-μm Band of Oxygen and Its Effect on the Transmission Function in an Inhomogeneous Atmosphere,” Opt. Spectosc. 30, 110 (1971).
  18. W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  19. W. M. Wright, “Generation of Sound Within a Closed Cell by an Alternating Current in a Straight Wire,” J. Acoust. Soc. Am. 82, 654 (1987).
    [CrossRef]
  20. C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973).
    [CrossRef]
  21. C. F. Dewey, “Design of Optoacoustic Systems,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 3.
  22. L. B. Kreuzer, “The Physics of Signal Generation and Detection,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 1.
  23. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983).
    [CrossRef] [PubMed]
  24. K. J. Ritter, T. D. Wilkerson, “High-Resolution Spectroscopy of the Oxygen A Band,” J. Mol. Spectrosc. 121, 1 (1987).
    [CrossRef]
  25. R. D. Kamm, “Detection of Weakly Absorbing Gases Using a Resonant Optoacoustic Method,” J. Appl. Phys. 47, 3550 (1976).
    [CrossRef]
  26. “AFGL Atmospheric Absorption Line Parameters Compilation,” National Climatic Center of NOAA, Digital Product Section, Federal Building, Asheville, NC 28801.
  27. M. W. Sigrist, “Laser Generation of Acoustic Waves in Liquids and Gases,” J. Appl. Phys. 60, R83 (1986).
    [CrossRef]

1987

W. M. Wright, “Generation of Sound Within a Closed Cell by an Alternating Current in a Straight Wire,” J. Acoust. Soc. Am. 82, 654 (1987).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High-Resolution Spectroscopy of the Oxygen A Band,” J. Mol. Spectrosc. 121, 1 (1987).
[CrossRef]

1986

M. W. Sigrist, “Laser Generation of Acoustic Waves in Liquids and Gases,” J. Appl. Phys. 60, R83 (1986).
[CrossRef]

A. C. Tam, “Applications of Sensing Techniques,” Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

1985

1983

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
[CrossRef]

L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983).
[CrossRef] [PubMed]

1979

V. D. Galkin, “Pressure-Induced Line Shift in the (0,0) b1Σg+−X3Σg− Band of Oxygen,” Opt. Spectrosc. 46, 106 (1979).

1976

R. D. Kamm, “Detection of Weakly Absorbing Gases Using a Resonant Optoacoustic Method,” J. Appl. Phys. 47, 3550 (1976).
[CrossRef]

1975

1973

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973).
[CrossRef]

V. D. Galkin, “Line Shifts in the A Oxygen Band as a Function of the Pressure,” Opt. Spectrosc. 35, 367 (1973).

1971

T. G. Adiks, V. I. Dianov-Klokov, “Shock Shift of Lines in the 0.762-μm Band of Oxygen and Its Effect on the Transmission Function in an Inhomogeneous Atmosphere,” Opt. Spectosc. 30, 110 (1971).

1968

1946

W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).

1881

A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510 (1881).
[CrossRef]

J. Tyndall, “Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter,” Proc. R. Soc. London 31, 307 (1881).
[CrossRef]

W. C. Roentgen, “On Tones Produced by the Intermittent Irradiation of a Gas,” Philos. Mag. 11, 308 (1881).
[CrossRef]

1880

A. G. Bell, “On the Production of Sound by Light,” Am. J. Sci. 20, 305 (1880).

Adiks, T. G.

T. G. Adiks, V. I. Dianov-Klokov, “Shock Shift of Lines in the 0.762-μm Band of Oxygen and Its Effect on the Transmission Function in an Inhomogeneous Atmosphere,” Opt. Spectosc. 30, 110 (1971).

Atwood, J. G.

Barrett, J. J.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
[CrossRef]

Bell, A. G.

A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510 (1881).
[CrossRef]

A. G. Bell, “On the Production of Sound by Light,” Am. J. Sci. 20, 305 (1880).

Bosenberg, J.

Bush, E. T.

W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).

Dewey, C. F.

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973).
[CrossRef]

C. F. Dewey, “Design of Optoacoustic Systems,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 3.

Dianov-Klokov, V. I.

T. G. Adiks, V. I. Dianov-Klokov, “Shock Shift of Lines in the 0.762-μm Band of Oxygen and Its Effect on the Transmission Function in an Inhomogeneous Atmosphere,” Opt. Spectosc. 30, 110 (1971).

Galkin, V. D.

V. D. Galkin, “Pressure-Induced Line Shift in the (0,0) b1Σg+−X3Σg− Band of Oxygen,” Opt. Spectrosc. 46, 106 (1979).

V. D. Galkin, “Line Shifts in the A Oxygen Band as a Function of the Pressure,” Opt. Spectrosc. 35, 367 (1973).

Hackett, C. E.

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973).
[CrossRef]

Herzberger, W. D.

W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).

Kamm, R. D.

R. D. Kamm, “Detection of Weakly Absorbing Gases Using a Resonant Optoacoustic Method,” J. Appl. Phys. 47, 3550 (1976).
[CrossRef]

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973).
[CrossRef]

Kerr, E. L.

Kreuzer, L. B.

L. B. Kreuzer, “The Physics of Signal Generation and Detection,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 1.

Leck, G. W.

W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).

Letokhov, V. S.

V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Berlin, 1986).

Ponomarev, Y. N.

Reddy, K. V.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
[CrossRef]

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-Resolution Spectroscopy of the Oxygen A Band,” J. Mol. Spectrosc. 121, 1 (1987).
[CrossRef]

Roentgen, W. C.

W. C. Roentgen, “On Tones Produced by the Intermittent Irradiation of a Gas,” Philos. Mag. 11, 308 (1881).
[CrossRef]

Romanovsky, O. A.

Rosengren, L. G.

Rothman, L. S.

Siebert, D. R.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, “Laser Generation of Acoustic Waves in Liquids and Gases,” J. Appl. Phys. 60, R83 (1986).
[CrossRef]

Solodov, A. M.

Stedman, D. H.

W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Stefanutti, L.

W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Tam, A. C.

A. C. Tam, “Applications of Sensing Techniques,” Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Terhune, R. W.

W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Tikhomirov, B. A.

Tyndall, J.

J. Tyndall, “Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter,” Proc. R. Soc. London 31, 307 (1881).
[CrossRef]

West, G. A.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
[CrossRef]

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-Resolution Spectroscopy of the Oxygen A Band,” J. Mol. Spectrosc. 121, 1 (1987).
[CrossRef]

Wright, W. M.

W. M. Wright, “Generation of Sound Within a Closed Cell by an Alternating Current in a Straight Wire,” J. Acoust. Soc. Am. 82, 654 (1987).
[CrossRef]

W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

Zharov, V. P.

V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Berlin, 1986).

Zuev, V. V.

Am. J. Sci.

A. G. Bell, “On the Production of Sound by Light,” Am. J. Sci. 20, 305 (1880).

Appl. Opt.

Appl. Phys. Lett.

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973).
[CrossRef]

J. Acoust. Soc. Am.

W. M. Wright, “Generation of Sound Within a Closed Cell by an Alternating Current in a Straight Wire,” J. Acoust. Soc. Am. 82, 654 (1987).
[CrossRef]

J. Appl. Phys.

R. D. Kamm, “Detection of Weakly Absorbing Gases Using a Resonant Optoacoustic Method,” J. Appl. Phys. 47, 3550 (1976).
[CrossRef]

M. W. Sigrist, “Laser Generation of Acoustic Waves in Liquids and Gases,” J. Appl. Phys. 60, R83 (1986).
[CrossRef]

J. Mol. Spectrosc.

K. J. Ritter, T. D. Wilkerson, “High-Resolution Spectroscopy of the Oxygen A Band,” J. Mol. Spectrosc. 121, 1 (1987).
[CrossRef]

Opt. Lett.

Opt. Spectosc.

T. G. Adiks, V. I. Dianov-Klokov, “Shock Shift of Lines in the 0.762-μm Band of Oxygen and Its Effect on the Transmission Function in an Inhomogeneous Atmosphere,” Opt. Spectosc. 30, 110 (1971).

Opt. Spectrosc.

Y. N. Ponomarev, B. A. Tikhomirov, ”Measurement of H2O Absorption-Line-Center Shift due to Pressure in a Two-Channel Optoacoustic Spectrometer,” Opt. Spectrosc. 58, 580 (1985).

V. D. Galkin, “Line Shifts in the A Oxygen Band as a Function of the Pressure,” Opt. Spectrosc. 35, 367 (1973).

V. D. Galkin, “Pressure-Induced Line Shift in the (0,0) b1Σg+−X3Σg− Band of Oxygen,” Opt. Spectrosc. 46, 106 (1979).

Philos. Mag.

A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510 (1881).
[CrossRef]

W. C. Roentgen, “On Tones Produced by the Intermittent Irradiation of a Gas,” Philos. Mag. 11, 308 (1881).
[CrossRef]

Proc. R. Soc.

J. Tyndall, “Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter,” Proc. R. Soc. London 31, 307 (1881).
[CrossRef]

RCA Rev.

W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).

Rev. Mod. Phys.

A. C. Tam, “Applications of Sensing Techniques,” Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Rev. Sci. In strum.

G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983).
[CrossRef]

Other

V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Berlin, 1986).

Y. Pao, Ed. Optoacoustic Spectroscopy and Detection (Academic, New York, 1977).

W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).

C. F. Dewey, “Design of Optoacoustic Systems,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 3.

L. B. Kreuzer, “The Physics of Signal Generation and Detection,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 1.

“AFGL Atmospheric Absorption Line Parameters Compilation,” National Climatic Center of NOAA, Digital Product Section, Federal Building, Asheville, NC 28801.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photoacoustic cell, microphone, and gas handling arrangement. The inset shows the coordinate system employed.

Fig. 2
Fig. 2

Laser arrangement and data collection electronics. Insets show the equipment brands and models, as well as relevant specifications. The specifications are the larger of either the manufacturer’s values or measured values.

Fig. 3
Fig. 3

Microphone response as a function of chopper frequency while the laser frequency is held on an absorption line peak. The resonance frequency, ωpeak, and resonance width, Δω, are shown.

Fig. 4
Fig. 4

Measured Q10 vs pressure. Data from five independent days, the error bars reflect the uncertainty in determining frequency values.

Fig. 5
Fig. 5

Lock-in linearity check. The error bars reflect the uncertainty in reading the analog meters.

Fig. 6
Fig. 6

Oxygen B band PP7 line. Microphone response (crosses) as the laser frequency is varied while the chopper frequency is held on the 10 acoustic resonance. The solid line is a computed synthetic absorption spectrum of oxygen using a Voigt line profile. The vertical bars represent ±1, ±2, ±3, ±4, and ±5 Lorentz half widths from line center.

Fig. 7
Fig. 7

Oxygen γ bandhead. Microphone response (points) as the laser frequency is varied while the chopper frequency is held on the 10 acoustic resonance. The solid line is a computed synthetic absorption spectrum of oxygen using Voigt line profiles centered on each line position.

Fig. 8
Fig. 8

Oxygen B band RR11 line at four pressures. Microphone response (points) as the laser is scanned across the absorption line. The solid line is a Voigt profile fit to the data, the fit parameters are: peak height, peak position, Lorentz width, and background (the Doppler with is calculated and not fit). The line center and Lorentz half width at half-maximum are given for each pressure.

Fig. 9
Fig. 9

Oxygen B band RR11 line center at many pressures. The two uncertainties given for the intercept are: one standard deviation resulting from the least-squares fit of the line through the equally weighted points, and the manufacturer’s stated accuracy of the wavemeter. Since the dye laser filter stack is not disturbed from scan to scan, the wavemeter uncertainty does not apply to these shifts in line position. The line shift seen is accurate to better than 0.001 cm−1atm−1. This uncertainty is one standard deviation resulting from the fit of the line.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H   ( r , t ) = α I   ( r , t )   .
2 I o S h ν π Δ ν τ 1
F = 2 I 0 S h ν π Δ ν + τ 1
I ( r , t ) = I 0 2 [ 1 + sin ( ω t ) ] 1 r δ ( r q ) δ ( ϕ 0 ) .
V cell 1 p j * p k d V = δ j k ,
P m n = { 2 for m 0 1 for m = 0 } 1 J m ( β m n ) 1 m 2 β m n 2 .
A m n ( ω ) = i ω α L ( γ 1 ) V cell ω m n 2 ( 1 ω 2 ω m n 2 i ω ω m n Q m n ) W 2 J m ( β m n q a ) P m n ,
H α cylinder  I ( r , t ) d V d t = α L W 2 ,
Q 10 = ν peak Δ ν peak .
Q j = E j ω j ( E s j + E ν j ) .

Metrics