Abstract

A Haidinger interferometer setup was adapted for accurate measurement of thickness and refractive index dispersion in transparent films using some spectral lines of a commercial argon-ion laser. Experimental results are reported and compared with those from other available methods.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Malacara, Optical Shop Testing (Wiley, New York, 1975).
  2. M. Françon, Optical Interferometry (Academic, New York, 1966), p. 260.
  3. G. L. Bourdet, A. G. Orszag, “Absolute Distance Measurements by CO2 Laser Multiwavelength Interferometry,” Appl. Opt. 18, 225 (1979).
    [CrossRef] [PubMed]
  4. C. R. Tilford, “Analytical Procedure for Determining Lengths from Fractional Fringes,” Appl. Opt. 16, 1857 (1977).
    [CrossRef] [PubMed]
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 95.
  6. Spectra Physics Catalog for High Power Ion Lasers (Spectra-Physics, Laser Products Division, 1250 W. Middlefield Road, Mountain View, CA 94042, 1977), pp. 22–23.
  7. F. Abeles, “La determination de l’indice et de l’épaisseur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
    [CrossRef]
  8. M. Gibson, J. Frejlich, “Implementation of the Abeles Method for Thin-Film Refractive-Index Measurement with Transparent Substrates,” Appl. Opt. 23, 1904 (1984).
    [CrossRef] [PubMed]
  9. A. M. Goodman, “Optical Interference Method for the Approximate Determination of Refractive Index and Thickness of a Transparent Layer,” Appl. Opt. 17, 2779 (1978).
    [CrossRef] [PubMed]
  10. M. D. Silver, E. T. K. Chow, “Thickness Measurement of Thin Permalloy Films: Comparison of X-Ray Emission Spectroscopy, Interferometry and Stylus Methods,” J. Vac. Sci. Technol. 2, 203 (1965).
    [CrossRef]
  11. P. H. Berning, “Theory and Calculations of Optical Thin Films,” Phys. Thin Films 1, 69 (1963).

1984 (1)

1979 (1)

1978 (1)

1977 (1)

1965 (1)

M. D. Silver, E. T. K. Chow, “Thickness Measurement of Thin Permalloy Films: Comparison of X-Ray Emission Spectroscopy, Interferometry and Stylus Methods,” J. Vac. Sci. Technol. 2, 203 (1965).
[CrossRef]

1963 (1)

P. H. Berning, “Theory and Calculations of Optical Thin Films,” Phys. Thin Films 1, 69 (1963).

1950 (1)

F. Abeles, “La determination de l’indice et de l’épaisseur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
[CrossRef]

Abeles, F.

F. Abeles, “La determination de l’indice et de l’épaisseur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
[CrossRef]

Berning, P. H.

P. H. Berning, “Theory and Calculations of Optical Thin Films,” Phys. Thin Films 1, 69 (1963).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 95.

Bourdet, G. L.

Chow, E. T. K.

M. D. Silver, E. T. K. Chow, “Thickness Measurement of Thin Permalloy Films: Comparison of X-Ray Emission Spectroscopy, Interferometry and Stylus Methods,” J. Vac. Sci. Technol. 2, 203 (1965).
[CrossRef]

Françon, M.

M. Françon, Optical Interferometry (Academic, New York, 1966), p. 260.

Frejlich, J.

Gibson, M.

Goodman, A. M.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, New York, 1975).

Orszag, A. G.

Silver, M. D.

M. D. Silver, E. T. K. Chow, “Thickness Measurement of Thin Permalloy Films: Comparison of X-Ray Emission Spectroscopy, Interferometry and Stylus Methods,” J. Vac. Sci. Technol. 2, 203 (1965).
[CrossRef]

Tilford, C. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 95.

Appl. Opt. (4)

J. Phys. Radium (1)

F. Abeles, “La determination de l’indice et de l’épaisseur des couches minces transparentes,” J. Phys. Radium 11, 310 (1950).
[CrossRef]

J. Vac. Sci. Technol. (1)

M. D. Silver, E. T. K. Chow, “Thickness Measurement of Thin Permalloy Films: Comparison of X-Ray Emission Spectroscopy, Interferometry and Stylus Methods,” J. Vac. Sci. Technol. 2, 203 (1965).
[CrossRef]

Phys. Thin Films (1)

P. H. Berning, “Theory and Calculations of Optical Thin Films,” Phys. Thin Films 1, 69 (1963).

Other (4)

D. Malacara, Optical Shop Testing (Wiley, New York, 1975).

M. Françon, Optical Interferometry (Academic, New York, 1966), p. 260.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 95.

Spectra Physics Catalog for High Power Ion Lasers (Spectra-Physics, Laser Products Division, 1250 W. Middlefield Road, Mountain View, CA 94042, 1977), pp. 22–23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Interference from a parallel transparent slab.

Fig. 2
Fig. 2

Experimental setup: (a) scheme of the modified Haidinger interferometer and (b) photograph of the actual setup. A 40×, N.A. = 0.65 microscope objective was used with a 5-μm diam pinhole placed 20 mm from the sample surface. Sample–screen distance was ~450 mm and the diameter of the tenth interference ring in the screen was ≃90 mm.

Fig. 3
Fig. 3

Photograph of the circular interference pattern as projected on the screen.

Tables (3)

Tables Icon

Table I Maximum Value for L (μm) that may be Processed

Tables Icon

Table II Experimental Results Obtained for Some Thin Film Samples

Tables Icon

Table III Comparative Results

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

2 n S l S = ( N S + F S ) λ ,
2 ( n S l S + n F l F ) = ( N S F + F S F ) λ ,
2 n F l F = ( N + f ) λ ,
n F = A ( 1 + k 2 B ) ,
L ( 1 + k i 2 B ) k i = N i + f i with L 2 l F A   .
λ S 1 / i I i k i ( 1 + B k i 2 )  ,
L = L ( B ) .
L ( B ) ( 1 + k i 2 B ) k i = G i + e i
| G i N i + e i f i | < 0.5
L i ( B ) = ( N i + f i ) / ( 1 + k i 2 B ) k i
L ( B ) = i   =   1 r L i ( B ) / r .
f i = L ( B ) ( 1 + k i 2 B ) k i N i .
W ( B ) i   =   1 r ( f i f i ) 2 .
l F = L / ( 2 A ) .
| L L | < ( 0.5 δ ) λ S ,
δ i   =   1 r | I i | Δ f i + L i   =   1 r | I i | k i 2 Δ λ i < 0.5.
Δ L = ± δ λ S .
p + F 1 = ( S 1 / b 2 λ ) R P 2 + ( S 2 / b 4 λ ) R P 4 + ,
p + F 1 ( S 1 / b 2 λ ) R p 2 for ( S 2 / b 4 λ ) R P 4 < 0.01 ,
S 1 ( b / 2 )   [ 1 1   +   2 l / ( n b ) ( 1   +   a / b ) 2 ]  , S 2 ( b / 8 )   [ 1 1   +   2 l ( 4 n 2     3 ) / ( b n 3 ) ( 1   +   a / b ) 4 ]  , a 2 t 2 l / n , b X + x ,
Δ L 0.03 λ S 0.03   μ m .

Metrics