Abstract

We propose a new approach for multiplexing a fiber sensor array. The proposed optical systems are interferometers using a low coherent light source. Each input signal imprinted on each sensor can be multiplexed/demultiplexed by using a series of heterodyne carriers with different intermediate frequencies. Intensity or phase modulation has been applied to the sensors in the experimental system, successfully demonstrating the function of our proposed approach. Furthermore, the condition for the proposed system to achieve optimal signal-to-noise ratio is discussed

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  2. K. Hotate, I. Sagehashi, N. Niwa, “PhaseNulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983), p. 280.
  3. K. Iwatsuki, K. Hotate, M. Higashiguchi, “Backscattering in an Optical Passive Ring-Resonator Gyro: Experiment,” Appl. Opt. 25, 4448 (1986).
    [CrossRef] [PubMed]
  4. K. Hotate, K. Taba, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” IEEE/OSA J. Lightwave Technol. LT-5, 997 (1987).
    [CrossRef]
  5. K. Hotate, D. T. Jong, “Quasiheterodyne Optical Fiber Sensor with Automated Adjustment of the Driving Wave Parameter,” Appl. Opt. 26, 2956 (1987).
    [CrossRef] [PubMed]
  6. A. R. Nelson, D. H. McMahon, R. L. Gravel, “Passive Multiplexing System for Fiber-Optic Sensors,” Appl. Opt. 19, 2917 (1980).
    [CrossRef] [PubMed]
  7. A. G. Hartog, D. N. Payne, “Remote Measurement of Temperature Distribution Using an Optical Fiber,” in Technical Digest, Eighth European Conference on Optical Communication, Cannes (1982), p. 215.
  8. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Anti-Stokes Ratio Thermometry,” in Technical Digest of Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), postdeadline paper PDS3.
  9. A. J. Rogers, “Polarization-Optical Time Domain Reflectometry: a Technique for the Measurement of Field Distributions,” Appl. Opt. 20, 1060 (1981).
    [CrossRef] [PubMed]
  10. P. Healey, D. J. Malyon, “OTDR in Single-Mode Fiber at 1.5 m Using Heterodyne Detection,” Electron. Lett. 18, 826 (1982).
  11. J. L. Brooks, M. Tur, B. Y. Kim, K. A. Fesler, H. J. Shaw, “Fiber-Optic Interferometric Sensor Arrays with Freedom from Source Phase-Induced Noise,” Opt. Lett. 11, 473 (1986).
    [CrossRef] [PubMed]
  12. L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
    [CrossRef]
  13. D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971 (1985).
    [CrossRef]
  14. I. Sakai, R. C. Youngquist, G. Parry, “Multiplexing of Optical Fiber Sensors Using a Frequency-Modulated Source and Gated Output,” IEEE/OSA J. Lightwave Technol. LT-5, 932 (1987).
    [CrossRef]
  15. S. A. Alchalbi, B. Culshaw, D. E. N. Davies, “Partially Coherent Sources in Interferometric Sensors,” in Technical Digest, First International Conference on Optical Fiber Sensors (IEE, 1983), p. 132.
  16. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
    [CrossRef]
  17. R. C. Youngquist, R. H. Wentworth, K. A. Fesler, “Selective Interferometric Sensing by the Use of Coherence Synthesis,” Opt. Lett. 12, 944 (1987).
    [CrossRef] [PubMed]
  18. Preliminary results on this work have been partly presented at the oral session of the following conference: D. T. Jong, K. Hotate, “Frequency Division Multiplication of Optical Fiber Sensors Using an Optical Delay Line with a Frequency Shifter,” in Technical Digest, Fifth International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper WDD3.
  19. M. Tur et al., “Spectral Structure of Phase Induced Intensity Noise in Recirculating Delay Lines,” Proc. Soc. Photo-Opt. In strum. Eng. 412, 22 (1983).
  20. K. Kikuchi, T. Okoshi, “High Resolution Measurement of the Spectrum of Semiconductor Lasers,” Japan Annual Reviews in Electronics, Computer Telecommunications: Optical Fibers, 51 (1982).
  21. M. Tur, B. Moslehi, J. W. Goodman, “Theory of Laser Phase Noise in Recirculating Fiber-Optic Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-3, 20 (1985).
    [CrossRef]
  22. K. Petermann, E. Weidel, “Semiconductor Laser Noise in an Interferometer System,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
    [CrossRef]
  23. P. H. Kingston, R. A. Becker, J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
    [CrossRef]
  24. W. P. Risk, R. C. Youngquist, G. S. Kino, H. J. Shaw, “Acousto-Optic Frequency Shifting in Birefringent Fiber,” Opt. Lett. 9, 309 (1984).
    [CrossRef] [PubMed]

1987 (4)

K. Hotate, K. Taba, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” IEEE/OSA J. Lightwave Technol. LT-5, 997 (1987).
[CrossRef]

K. Hotate, D. T. Jong, “Quasiheterodyne Optical Fiber Sensor with Automated Adjustment of the Driving Wave Parameter,” Appl. Opt. 26, 2956 (1987).
[CrossRef] [PubMed]

I. Sakai, R. C. Youngquist, G. Parry, “Multiplexing of Optical Fiber Sensors Using a Frequency-Modulated Source and Gated Output,” IEEE/OSA J. Lightwave Technol. LT-5, 932 (1987).
[CrossRef]

R. C. Youngquist, R. H. Wentworth, K. A. Fesler, “Selective Interferometric Sensing by the Use of Coherence Synthesis,” Opt. Lett. 12, 944 (1987).
[CrossRef] [PubMed]

1986 (2)

1985 (3)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

M. Tur, B. Moslehi, J. W. Goodman, “Theory of Laser Phase Noise in Recirculating Fiber-Optic Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-3, 20 (1985).
[CrossRef]

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971 (1985).
[CrossRef]

1984 (1)

1983 (3)

P. H. Kingston, R. A. Becker, J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

M. Tur et al., “Spectral Structure of Phase Induced Intensity Noise in Recirculating Delay Lines,” Proc. Soc. Photo-Opt. In strum. Eng. 412, 22 (1983).

L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

1982 (2)

P. Healey, D. J. Malyon, “OTDR in Single-Mode Fiber at 1.5 m Using Heterodyne Detection,” Electron. Lett. 18, 826 (1982).

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

1981 (2)

A. J. Rogers, “Polarization-Optical Time Domain Reflectometry: a Technique for the Measurement of Field Distributions,” Appl. Opt. 20, 1060 (1981).
[CrossRef] [PubMed]

K. Petermann, E. Weidel, “Semiconductor Laser Noise in an Interferometer System,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

1980 (1)

Alchalbi, S. A.

S. A. Alchalbi, B. Culshaw, D. E. N. Davies, “Partially Coherent Sources in Interferometric Sensors,” in Technical Digest, First International Conference on Optical Fiber Sensors (IEE, 1983), p. 132.

Becker, R. A.

P. H. Kingston, R. A. Becker, J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Anti-Stokes Ratio Thermometry,” in Technical Digest of Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), postdeadline paper PDS3.

Brooks, J. L.

J. L. Brooks, M. Tur, B. Y. Kim, K. A. Fesler, H. J. Shaw, “Fiber-Optic Interferometric Sensor Arrays with Freedom from Source Phase-Induced Noise,” Opt. Lett. 11, 473 (1986).
[CrossRef] [PubMed]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Culshaw, B.

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971 (1985).
[CrossRef]

L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

S. A. Alchalbi, B. Culshaw, D. E. N. Davies, “Partially Coherent Sources in Interferometric Sensors,” in Technical Digest, First International Conference on Optical Fiber Sensors (IEE, 1983), p. 132.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Anti-Stokes Ratio Thermometry,” in Technical Digest of Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), postdeadline paper PDS3.

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Davies, D. E. N.

L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

S. A. Alchalbi, B. Culshaw, D. E. N. Davies, “Partially Coherent Sources in Interferometric Sensors,” in Technical Digest, First International Conference on Optical Fiber Sensors (IEE, 1983), p. 132.

Fesler, K. A.

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Giles, L. P.

L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

Goodman, J. W.

M. Tur, B. Moslehi, J. W. Goodman, “Theory of Laser Phase Noise in Recirculating Fiber-Optic Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-3, 20 (1985).
[CrossRef]

Gravel, R. L.

Hartog, A. G.

A. G. Hartog, D. N. Payne, “Remote Measurement of Temperature Distribution Using an Optical Fiber,” in Technical Digest, Eighth European Conference on Optical Communication, Cannes (1982), p. 215.

Healey, P.

P. Healey, D. J. Malyon, “OTDR in Single-Mode Fiber at 1.5 m Using Heterodyne Detection,” Electron. Lett. 18, 826 (1982).

Higashiguchi, M.

Hotate, K.

K. Hotate, K. Taba, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” IEEE/OSA J. Lightwave Technol. LT-5, 997 (1987).
[CrossRef]

K. Hotate, D. T. Jong, “Quasiheterodyne Optical Fiber Sensor with Automated Adjustment of the Driving Wave Parameter,” Appl. Opt. 26, 2956 (1987).
[CrossRef] [PubMed]

K. Iwatsuki, K. Hotate, M. Higashiguchi, “Backscattering in an Optical Passive Ring-Resonator Gyro: Experiment,” Appl. Opt. 25, 4448 (1986).
[CrossRef] [PubMed]

K. Hotate, I. Sagehashi, N. Niwa, “PhaseNulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983), p. 280.

Preliminary results on this work have been partly presented at the oral session of the following conference: D. T. Jong, K. Hotate, “Frequency Division Multiplication of Optical Fiber Sensors Using an Optical Delay Line with a Frequency Shifter,” in Technical Digest, Fifth International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper WDD3.

Iwatsuki, K.

Jong, D. T.

K. Hotate, D. T. Jong, “Quasiheterodyne Optical Fiber Sensor with Automated Adjustment of the Driving Wave Parameter,” Appl. Opt. 26, 2956 (1987).
[CrossRef] [PubMed]

Preliminary results on this work have been partly presented at the oral session of the following conference: D. T. Jong, K. Hotate, “Frequency Division Multiplication of Optical Fiber Sensors Using an Optical Delay Line with a Frequency Shifter,” in Technical Digest, Fifth International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper WDD3.

Kikuchi, K.

K. Kikuchi, T. Okoshi, “High Resolution Measurement of the Spectrum of Semiconductor Lasers,” Japan Annual Reviews in Electronics, Computer Telecommunications: Optical Fibers, 51 (1982).

Kim, B. Y.

J. L. Brooks, M. Tur, B. Y. Kim, K. A. Fesler, H. J. Shaw, “Fiber-Optic Interferometric Sensor Arrays with Freedom from Source Phase-Induced Noise,” Opt. Lett. 11, 473 (1986).
[CrossRef] [PubMed]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Kingston, P. H.

P. H. Kingston, R. A. Becker, J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

Kino, G. S.

Leonberger, J.

P. H. Kingston, R. A. Becker, J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

Malyon, D. J.

P. Healey, D. J. Malyon, “OTDR in Single-Mode Fiber at 1.5 m Using Heterodyne Detection,” Electron. Lett. 18, 826 (1982).

McMahon, D. H.

Moslehi, B.

M. Tur, B. Moslehi, J. W. Goodman, “Theory of Laser Phase Noise in Recirculating Fiber-Optic Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-3, 20 (1985).
[CrossRef]

Nelson, A. R.

Niwa, N.

K. Hotate, I. Sagehashi, N. Niwa, “PhaseNulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983), p. 280.

Okoshi, T.

K. Kikuchi, T. Okoshi, “High Resolution Measurement of the Spectrum of Semiconductor Lasers,” Japan Annual Reviews in Electronics, Computer Telecommunications: Optical Fibers, 51 (1982).

Parry, G.

I. Sakai, R. C. Youngquist, G. Parry, “Multiplexing of Optical Fiber Sensors Using a Frequency-Modulated Source and Gated Output,” IEEE/OSA J. Lightwave Technol. LT-5, 932 (1987).
[CrossRef]

Payne, D. N.

A. G. Hartog, D. N. Payne, “Remote Measurement of Temperature Distribution Using an Optical Fiber,” in Technical Digest, Eighth European Conference on Optical Communication, Cannes (1982), p. 215.

Petermann, K.

K. Petermann, E. Weidel, “Semiconductor Laser Noise in an Interferometer System,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Anti-Stokes Ratio Thermometry,” in Technical Digest of Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), postdeadline paper PDS3.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Risk, W. P.

Rogers, A. J.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Anti-Stokes Ratio Thermometry,” in Technical Digest of Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), postdeadline paper PDS3.

Sagehashi, I.

K. Hotate, I. Sagehashi, N. Niwa, “PhaseNulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983), p. 280.

Sakai, I.

I. Sakai, R. C. Youngquist, G. Parry, “Multiplexing of Optical Fiber Sensors Using a Frequency-Modulated Source and Gated Output,” IEEE/OSA J. Lightwave Technol. LT-5, 932 (1987).
[CrossRef]

Shaw, H. J.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Taba, K.

K. Hotate, K. Taba, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” IEEE/OSA J. Lightwave Technol. LT-5, 997 (1987).
[CrossRef]

Tur, M.

J. L. Brooks, M. Tur, B. Y. Kim, K. A. Fesler, H. J. Shaw, “Fiber-Optic Interferometric Sensor Arrays with Freedom from Source Phase-Induced Noise,” Opt. Lett. 11, 473 (1986).
[CrossRef] [PubMed]

M. Tur, B. Moslehi, J. W. Goodman, “Theory of Laser Phase Noise in Recirculating Fiber-Optic Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-3, 20 (1985).
[CrossRef]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

M. Tur et al., “Spectral Structure of Phase Induced Intensity Noise in Recirculating Delay Lines,” Proc. Soc. Photo-Opt. In strum. Eng. 412, 22 (1983).

Uttam, D.

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971 (1985).
[CrossRef]

L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

Weidel, E.

K. Petermann, E. Weidel, “Semiconductor Laser Noise in an Interferometer System,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

Wentworth, R. H.

R. C. Youngquist, R. H. Wentworth, K. A. Fesler, “Selective Interferometric Sensing by the Use of Coherence Synthesis,” Opt. Lett. 12, 944 (1987).
[CrossRef] [PubMed]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Youngquist, R. C.

I. Sakai, R. C. Youngquist, G. Parry, “Multiplexing of Optical Fiber Sensors Using a Frequency-Modulated Source and Gated Output,” IEEE/OSA J. Lightwave Technol. LT-5, 932 (1987).
[CrossRef]

R. C. Youngquist, R. H. Wentworth, K. A. Fesler, “Selective Interferometric Sensing by the Use of Coherence Synthesis,” Opt. Lett. 12, 944 (1987).
[CrossRef] [PubMed]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

W. P. Risk, R. C. Youngquist, G. S. Kino, H. J. Shaw, “Acousto-Optic Frequency Shifting in Birefringent Fiber,” Opt. Lett. 9, 309 (1984).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. H. Kingston, R. A. Becker, J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

Electron. Lett. (2)

P. Healey, D. J. Malyon, “OTDR in Single-Mode Fiber at 1.5 m Using Heterodyne Detection,” Electron. Lett. 18, 826 (1982).

L. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

K. Petermann, E. Weidel, “Semiconductor Laser Noise in an Interferometer System,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (5)

M. Tur, B. Moslehi, J. W. Goodman, “Theory of Laser Phase Noise in Recirculating Fiber-Optic Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-3, 20 (1985).
[CrossRef]

K. Hotate, K. Taba, “Drift of an Optical Fiber Gyroscope Caused by the Faraday Effect: Experiment,” IEEE/OSA J. Lightwave Technol. LT-5, 997 (1987).
[CrossRef]

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971 (1985).
[CrossRef]

I. Sakai, R. C. Youngquist, G. Parry, “Multiplexing of Optical Fiber Sensors Using a Frequency-Modulated Source and Gated Output,” IEEE/OSA J. Lightwave Technol. LT-5, 932 (1987).
[CrossRef]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence Multiplexing of Fiber-Optic Interferometric Sensors,” IEEE/OSA J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Opt. Lett. (3)

Proc. Soc. Photo-Opt. In strum. Eng. (1)

M. Tur et al., “Spectral Structure of Phase Induced Intensity Noise in Recirculating Delay Lines,” Proc. Soc. Photo-Opt. In strum. Eng. 412, 22 (1983).

Other (6)

K. Kikuchi, T. Okoshi, “High Resolution Measurement of the Spectrum of Semiconductor Lasers,” Japan Annual Reviews in Electronics, Computer Telecommunications: Optical Fibers, 51 (1982).

Preliminary results on this work have been partly presented at the oral session of the following conference: D. T. Jong, K. Hotate, “Frequency Division Multiplication of Optical Fiber Sensors Using an Optical Delay Line with a Frequency Shifter,” in Technical Digest, Fifth International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper WDD3.

S. A. Alchalbi, B. Culshaw, D. E. N. Davies, “Partially Coherent Sources in Interferometric Sensors,” in Technical Digest, First International Conference on Optical Fiber Sensors (IEE, 1983), p. 132.

K. Hotate, I. Sagehashi, N. Niwa, “PhaseNulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983), p. 280.

A. G. Hartog, D. N. Payne, “Remote Measurement of Temperature Distribution Using an Optical Fiber,” in Technical Digest, Eighth European Conference on Optical Communication, Cannes (1982), p. 215.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Anti-Stokes Ratio Thermometry,” in Technical Digest of Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), postdeadline paper PDS3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic configurations of the sensor systems using the proposed technique: (a) reflective sensors; (b) Rayleigh backscattering; (c) transmissive sensors.

Fig. 2
Fig. 2

Coherent characteristics of the light source used to measure the output of the sensor system in Fig. 1(a). The signal at the left hand side corresponds to sensor 1, and the signal at the right-hand side corresponds to sensor 2. The abscissa is the optical path length in the sensing route. The optical path length in the delay loop of Fig. 1(a) is 3 m.

Fig. 3
Fig. 3

Output of the proposed sensor system measured by the spectrum analyzer. The 30-MHz signal corresponds to sensor 1, the 60-MHz signal corresponds to sensor 2: (a) sensors 1 and 2 are operated simultaneously, (b) sensor 2 is taken away, (c) sensor 1 is taken away.

Fig. 4
Fig. 4

Experimental results in detecting the intensity modulated input: (a) input signal applied to sensor 1, 40-Hz square waveform; (b) output signal for sensor 1; (c) input signal applied to sensor 2, 30-Hz square waveform; (d) output signal for sensor 2.

Fig. 5
Fig. 5

Relationship between the input and the output in the case of the intensity modulation: (a) sensor 1, the output is detected on the carrier at 30 MHz; (b) sensor 2, the output is detected on the carrier at 60 MHz.

Fig. 6
Fig. 6

Experimental results of detecting the phase modulated input. The signal at the left-hand side corresponds to sensor 1, and the signal at the right-hand side corresponds to sensor 2: (a) sensor 1 is modulated with 40 kHz and sensor 2 is not modulated; (b) sensors 1 and 2 are modulated with 30 kHz; (c) sensor 1 is modulated with 20 kHz and sensor 2 is modulated with 25 kHz; (d) sensor 1 is not modulated and sensor 2 is modulated with 15 kHz.

Fig. 7
Fig. 7

Signal-to-noise ratios due to phase fluctuation induced noise (thin curves) and detector shot noise (thick curves) for the optimized sensor system: lc is the light source coherent length, 2P0 is the light source power, B is the signal bandwidth, and 1 − α is the loss in the delay loop.

Fig. 8
Fig. 8

Signal-to-noise ratios due to phase fluctuation induced noise (thin curves) and detector shot noise (thick curves) for the simplified system design. The transmission ratios of the couplers at the sensing route are identical: lc is the light source coherent length, 2P0 is the light source power, B is the signal bandwidth, and 1 − α is the loss in the delay loop.

Tables (1)

Tables Icon

Table I Transmission Ratios of the Fiber Couplers Tr and Tsi (%) to Equalize the Output of Each Sensor and to Optimize the Sensor System

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

P a 1 = ( 1 T s 1 ) 2 P o 4 ,
P a i = ( 1 T s i ) 2 P o k = 1 i 1 T s k 4 ( i = 2 , 3 , , n 1 ) ,
P a n = P o  Π k = 1 i 1   T s k 4 ,
P b o = T r P o 2 ,
P b i = α i ( 1 T r ) 2 T r i 1 P o 2 ( i = 1 , 2 , , n ) .
I α i = 1 n P a i + i = 1 P b i + 2 i = 1 n P a i 1 / 2 P b i 1 / 2   cos ( i ω t + θ i ) ,
E 1 = 2 P a 1 1 / 2 P b 1 1 / 2 = α 1 / 2 ( 1 T r ) ( 1 T s 1 ) P o 2 ,
E i = 2 P a i 1 / 2 P b i 1 / 2 = α i / 2 ( 1 T r ) T r ( i 1 ) / 2 ( 1 T s i ) P o Π k = 1 i 1 T s k 2 ( i = 1 , 2 , , n 1 ) ,
E n = 2 P a n 1 / 2 P b n 1 / 2 = α n / 2 ( 1 T r ) T r ( n 1 ) / 2 P o Π k = 1 n 1 T s k 2 ,
T s i = 1 A n i 1 A n i + 1 ( i = 1 , 2 , , n 1 ) .
E = E 1 = E 2 = = E n = α 1 / 2 ( 1 T r ) A n 1 ( 1 A ) P o ( 1 A n ) 2 .
N p h = P 1 P 2 τ c 1 2 π f τ c ,
N p h = P 1 P 2 τ c .
N p h n = ( P A P B P A B ) τ c ,
P A = i = 1 n P a i
P B = i = 1 P b i
P A B = i = 1 n P a i P b i .
P A = ( 1 A ) ( 1 + A n ) P o ( 1 + A ) ( 1 A n ) 4 .
P B = [ T r + α ( 1 T r ) 2 1   α T r ] P o 2
P A B = n α ( 1 T r ) 2 ( 1 A ) 2 A 2 n 2 P o ( 1 A n ) 2 8
S N = 1 / 2 E 2 N p h n B ,
S N = 1 / 2 R 2 E 2 M 2 2 e R P ave M 2 + x B ,
P ave = P A + P B .
S N = 4.4 × 10 17 E 2 P ave
1 T s 1 = α 1 / 2 T r 1 / 2 ( 1 T s 2 ) T s 1 ,
1 T s 2 = α 1 / 2 T r 1 / 2 ( 1 T s 3 ) T s 2 , · · · ·
1 T s ( n 2 ) = α 1 / 2 T r 1 / 2 ( 1 T s ( n 1 ) ) T s ( n 2 ) ,
1 T s ( n 1 ) = α 1 / 2 T r 1 / 2 T s ( n 1 ) .
T s ( n 1 ) = 1 1 + A = 1 A 1 A 2 ,
T s ( n 2 ) = 1 + A 1 + A + A 2 = 1 A 2 1 A 3 ,
T s 2 = 1 + A + ... + A n 3 1 + A + ... + A n 2 = 1 A n 2 1 A n 1 ,
T s 1 = 1 + A + ... + A n 2 1 + A + ... + A n 1 = 1 A n 1 1 A n
E i = α ( i 1 ) / 2 ( 1 T r ) T r ( i 1 ) / 2 ( 1 T s ) T s i 1 P o 2  ( i = 1 , 2 , , n 1 ) ,
E n = α n / 2 ( 1 T r ) T r ( n 1 ) / 2 T s n P o 2
[ ( 1 T r ) T r ( n 2 ) / 2 ] T r = 0 ,
[ ( 1 T s ) T s n 2 ] T s = 0.
T r opt = 1 2 n ,
T s opt = 1 1 n 1 .
P A = [ ( 1 T s opt ) 2 ( 1 T s opt 2 n 2 ) 1   T s opt 2 + T s opt ] P o 4 ,
P B = [ T r opt + α + ( 1   T r opt ) 2 1 α T r opt ] P o 2 ,
P A B = [ α ( 1 T r opt ) 2 ( 1 T s opt ) 2 ( 1 α n 1 T r opt n 1 T s opt 2 n 2 ) 1 α T r opt T s opt 2 + α n T r n 1 ( 1 T r opt ) 2 T s opt 2 n ] × P o 2 8 .
S N = 1 / 2 E n 1 2 N p h n B .
S N = 1 / 2 E n 1 2 R 2 M 2 2 e R M 2 + x P ave B .

Metrics