Abstract

Acuity of the short wavelength sensitive (SWS) cone pathways was evaluated in 195 observers ages 5–72. A rapid staircase procedure gave comparable results to a longer frequency-of-seeing procedure. Large and reliable individual differences were found among normal observers. Interindividual variability could not be accounted for by differences in density of prereceptoral filters, differences in sensitivity of the SWS cones, or effects of the macular SWS cone-free region, but could be accounted for in part by differences in the accommodative state. Therefore it is important to control the accommodative state in younger observers. SWS cone acuity can be measured reliably and rapidly in a clinical environment and provides a complement to increment threshold measures of the SWS cone pathways.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Eds., Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).
  2. M. Marre, “Clinical Examination of the Three Color Vision Mechanisms in Acquired Color Vision Defects,” Mod. Probl. Ophthalmol.11, 224 (1972)M. A. Sandberg, E. L. Berson, “Blue and Green Cone Mechanisms in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 16, 149 (1977)R. S. L. Young, “Early-Stage Abnormality of Foveal Pi Mechanisms in a Patient with Retinitis Pigmentosa,” J. Opt. Soc. Am. 72, 1021 (1982)A. J. Adams, B. Schefrin, K. Huie, “New Clinical Color Threshold Test for Eye Disease,” Am. J. Optom. Physiol. Optics 64, 29 (1987)G. Haegerstrom-Portnoy, B. Brown, “Two-Color Increment Thresholds in Early Age-Related Maculopathy,” Clin. Vision Sci.00, 000 (198X), in press.
    [CrossRef] [PubMed]
  3. Y. Nakai, T. Ohara, M. Yokoyama, “Visual Acuity of the Blue Cone System and Its Clinical Use,” Jpn. J. Ophthalmol. 35, 1295 (1981).
  4. D. G. Green, “Visual Acuity in the Blue Cone Monochromat,” J. Physiol. 222, 419 (1972)D. H. Kelly, “Spatio-Temporal Frequency Characteristics of Color-Vision Mechanisms,” J. Opt. Soc. Am. 64, 983 (1974)C. R. Cavonius, O. Estevez, “Contrast Sensitivity of Individual Colour Mechanisms of Human Vision,” J. Physiol. 248, 649 (1975)C. F. Stromeyer, K. Kranda, C. Sternheim, “Selective Chromatic Adaptation at Different Spatial Frequencies,” Vision Res. 18, 427 (1978).
    [CrossRef] [PubMed]
  5. W. S. Stiles, “Increment Thresholds & the Mechanisms of Colour Vision,” Doc. Ophthalmol. 3, 138 (1949)G. S. Brindley, “The Summation Areas of Human Colour-Receptive Mechanisms at Increment-Threshold,” J. Physiol. 124, 400 (1954)N.W. Daw, J. M. Enoch, “Contrast Sensitivity, Westheimer Function and Stiles-Crawford Effect in a Blue Cone Monochromat,” Vision Res. 13, 1669 (1973)R. T. Eskew, R. M. Boynton, “Effects of Field Area and Configuration on Chromatic and Border Discriminations,” Vision Res. 27, 1835 (1987).
    [CrossRef] [PubMed]
  6. H. R. Wilson, R. Blake, J. Pokorny, “Limits of Binocular Fusion in the Short Wave Sensitive (‘Blue’) Cones,” Vision Res. 28, 555 (1988). Wilson et al. reported that this system yielded dominant wavelengths and colorimetric purities that were, respectively, 464 nm, 0.96 and 588 nm, 0.98 for the blue target and yellow adapting field.
    [CrossRef] [PubMed]
  7. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982), p. 102.
  8. R. F. Quick, “A Vector-Magnitude Model of Contrast Detection,” Kybernetik 16, 65 (1974).
    [CrossRef] [PubMed]
  9. H. Levitt, “Transformed Up-Down Methods in Psychoacoustics,” J. Acoust. Soc. Am. 49, 467 (1970).
    [CrossRef]
  10. B. J. Fellows, “Chance Stimulus Sequences for Discrimination Tasks,” Psychol. Bull. 67, 87 (1967).
    [CrossRef] [PubMed]
  11. R. A. Bone, J. M. B. Sparrock, “Comparison of Macular Pigment Densities in Human Eyes,” Vision Res. 11, 1057 (1971)J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and Human Macular Pigment Density,” Vision Res. 27, 257 (1987)P. L. Pease, A. J. Adams, E. Nuccio, “Optical Density of Human Macular Pigment,” Vision Res. 27, 705 (1987).
    [CrossRef] [PubMed]
  12. Lateral chromatic aberration of the eye was not controlled. For these stimuli, if observers used slightly eccentric fixation lateral chromatic aberration would only cause a minor change in stimulus contrast. See L. N. Thibos, “Calculation of the Influence of Lateral Chromatic Aberration on Image Quality Across the Visual Field,” J. Opt. Soc. Am. A 4, 1673 (1987).
    [CrossRef] [PubMed]
  13. J. M. Wolfe, D. A. Owens, “Is Accommodation Colorblind? Focusing Chromatic Contours,” Perception 10, 53 (1981).
    [CrossRef] [PubMed]
  14. F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).
  15. D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial Resolution of the Short-Wavelength Mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharp, Eds. (Academic, London, 1983).
  16. P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a Subtype of Cone Photoreceptor, Likely to be Blue Sensitive, in the Human Retina,” J. Comp. Neurol. 255, 18 (1987).
    [CrossRef] [PubMed]
  17. D. C. Hood, N. I. Benimoff, V. C. Greenstein, “The Response Range of the Blue-Cone Pathways: a Source of Vulnerability to Disease,” Invest. Ophthalmol. Visual Sci. 25, 864 (1984).

1988 (1)

H. R. Wilson, R. Blake, J. Pokorny, “Limits of Binocular Fusion in the Short Wave Sensitive (‘Blue’) Cones,” Vision Res. 28, 555 (1988). Wilson et al. reported that this system yielded dominant wavelengths and colorimetric purities that were, respectively, 464 nm, 0.96 and 588 nm, 0.98 for the blue target and yellow adapting field.
[CrossRef] [PubMed]

1987 (2)

1985 (1)

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).

1984 (1)

D. C. Hood, N. I. Benimoff, V. C. Greenstein, “The Response Range of the Blue-Cone Pathways: a Source of Vulnerability to Disease,” Invest. Ophthalmol. Visual Sci. 25, 864 (1984).

1981 (2)

J. M. Wolfe, D. A. Owens, “Is Accommodation Colorblind? Focusing Chromatic Contours,” Perception 10, 53 (1981).
[CrossRef] [PubMed]

Y. Nakai, T. Ohara, M. Yokoyama, “Visual Acuity of the Blue Cone System and Its Clinical Use,” Jpn. J. Ophthalmol. 35, 1295 (1981).

1974 (1)

R. F. Quick, “A Vector-Magnitude Model of Contrast Detection,” Kybernetik 16, 65 (1974).
[CrossRef] [PubMed]

1972 (1)

D. G. Green, “Visual Acuity in the Blue Cone Monochromat,” J. Physiol. 222, 419 (1972)D. H. Kelly, “Spatio-Temporal Frequency Characteristics of Color-Vision Mechanisms,” J. Opt. Soc. Am. 64, 983 (1974)C. R. Cavonius, O. Estevez, “Contrast Sensitivity of Individual Colour Mechanisms of Human Vision,” J. Physiol. 248, 649 (1975)C. F. Stromeyer, K. Kranda, C. Sternheim, “Selective Chromatic Adaptation at Different Spatial Frequencies,” Vision Res. 18, 427 (1978).
[CrossRef] [PubMed]

1971 (1)

R. A. Bone, J. M. B. Sparrock, “Comparison of Macular Pigment Densities in Human Eyes,” Vision Res. 11, 1057 (1971)J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and Human Macular Pigment Density,” Vision Res. 27, 257 (1987)P. L. Pease, A. J. Adams, E. Nuccio, “Optical Density of Human Macular Pigment,” Vision Res. 27, 705 (1987).
[CrossRef] [PubMed]

1970 (1)

H. Levitt, “Transformed Up-Down Methods in Psychoacoustics,” J. Acoust. Soc. Am. 49, 467 (1970).
[CrossRef]

1967 (1)

B. J. Fellows, “Chance Stimulus Sequences for Discrimination Tasks,” Psychol. Bull. 67, 87 (1967).
[CrossRef] [PubMed]

1949 (1)

W. S. Stiles, “Increment Thresholds & the Mechanisms of Colour Vision,” Doc. Ophthalmol. 3, 138 (1949)G. S. Brindley, “The Summation Areas of Human Colour-Receptive Mechanisms at Increment-Threshold,” J. Physiol. 124, 400 (1954)N.W. Daw, J. M. Enoch, “Contrast Sensitivity, Westheimer Function and Stiles-Crawford Effect in a Blue Cone Monochromat,” Vision Res. 13, 1669 (1973)R. T. Eskew, R. M. Boynton, “Effects of Field Area and Configuration on Chromatic and Border Discriminations,” Vision Res. 27, 1835 (1987).
[CrossRef] [PubMed]

Ahnelt, P. K.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a Subtype of Cone Photoreceptor, Likely to be Blue Sensitive, in the Human Retina,” J. Comp. Neurol. 255, 18 (1987).
[CrossRef] [PubMed]

Benimoff, N. I.

D. C. Hood, N. I. Benimoff, V. C. Greenstein, “The Response Range of the Blue-Cone Pathways: a Source of Vulnerability to Disease,” Invest. Ophthalmol. Visual Sci. 25, 864 (1984).

Blake, R.

H. R. Wilson, R. Blake, J. Pokorny, “Limits of Binocular Fusion in the Short Wave Sensitive (‘Blue’) Cones,” Vision Res. 28, 555 (1988). Wilson et al. reported that this system yielded dominant wavelengths and colorimetric purities that were, respectively, 464 nm, 0.96 and 588 nm, 0.98 for the blue target and yellow adapting field.
[CrossRef] [PubMed]

Bone, R. A.

R. A. Bone, J. M. B. Sparrock, “Comparison of Macular Pigment Densities in Human Eyes,” Vision Res. 11, 1057 (1971)J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and Human Macular Pigment Density,” Vision Res. 27, 257 (1987)P. L. Pease, A. J. Adams, E. Nuccio, “Optical Density of Human Macular Pigment,” Vision Res. 27, 705 (1987).
[CrossRef] [PubMed]

Collier, R. J.

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial Resolution of the Short-Wavelength Mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharp, Eds. (Academic, London, 1983).

de Monasterio, F. M.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).

Fellows, B. J.

B. J. Fellows, “Chance Stimulus Sequences for Discrimination Tasks,” Psychol. Bull. 67, 87 (1967).
[CrossRef] [PubMed]

Green, D. G.

D. G. Green, “Visual Acuity in the Blue Cone Monochromat,” J. Physiol. 222, 419 (1972)D. H. Kelly, “Spatio-Temporal Frequency Characteristics of Color-Vision Mechanisms,” J. Opt. Soc. Am. 64, 983 (1974)C. R. Cavonius, O. Estevez, “Contrast Sensitivity of Individual Colour Mechanisms of Human Vision,” J. Physiol. 248, 649 (1975)C. F. Stromeyer, K. Kranda, C. Sternheim, “Selective Chromatic Adaptation at Different Spatial Frequencies,” Vision Res. 18, 427 (1978).
[CrossRef] [PubMed]

Greenstein, V. C.

D. C. Hood, N. I. Benimoff, V. C. Greenstein, “The Response Range of the Blue-Cone Pathways: a Source of Vulnerability to Disease,” Invest. Ophthalmol. Visual Sci. 25, 864 (1984).

Hood, D. C.

D. C. Hood, N. I. Benimoff, V. C. Greenstein, “The Response Range of the Blue-Cone Pathways: a Source of Vulnerability to Disease,” Invest. Ophthalmol. Visual Sci. 25, 864 (1984).

Kolb, H.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a Subtype of Cone Photoreceptor, Likely to be Blue Sensitive, in the Human Retina,” J. Comp. Neurol. 255, 18 (1987).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed Up-Down Methods in Psychoacoustics,” J. Acoust. Soc. Am. 49, 467 (1970).
[CrossRef]

Marre, M.

M. Marre, “Clinical Examination of the Three Color Vision Mechanisms in Acquired Color Vision Defects,” Mod. Probl. Ophthalmol.11, 224 (1972)M. A. Sandberg, E. L. Berson, “Blue and Green Cone Mechanisms in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 16, 149 (1977)R. S. L. Young, “Early-Stage Abnormality of Foveal Pi Mechanisms in a Patient with Retinitis Pigmentosa,” J. Opt. Soc. Am. 72, 1021 (1982)A. J. Adams, B. Schefrin, K. Huie, “New Clinical Color Threshold Test for Eye Disease,” Am. J. Optom. Physiol. Optics 64, 29 (1987)G. Haegerstrom-Portnoy, B. Brown, “Two-Color Increment Thresholds in Early Age-Related Maculopathy,” Clin. Vision Sci.00, 000 (198X), in press.
[CrossRef] [PubMed]

McCrane, E. P.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).

Nakai, Y.

Y. Nakai, T. Ohara, M. Yokoyama, “Visual Acuity of the Blue Cone System and Its Clinical Use,” Jpn. J. Ophthalmol. 35, 1295 (1981).

Newlander, J. K.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).

Ohara, T.

Y. Nakai, T. Ohara, M. Yokoyama, “Visual Acuity of the Blue Cone System and Its Clinical Use,” Jpn. J. Ophthalmol. 35, 1295 (1981).

Owens, D. A.

J. M. Wolfe, D. A. Owens, “Is Accommodation Colorblind? Focusing Chromatic Contours,” Perception 10, 53 (1981).
[CrossRef] [PubMed]

Pflug, R.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a Subtype of Cone Photoreceptor, Likely to be Blue Sensitive, in the Human Retina,” J. Comp. Neurol. 255, 18 (1987).
[CrossRef] [PubMed]

Pokorny, J.

H. R. Wilson, R. Blake, J. Pokorny, “Limits of Binocular Fusion in the Short Wave Sensitive (‘Blue’) Cones,” Vision Res. 28, 555 (1988). Wilson et al. reported that this system yielded dominant wavelengths and colorimetric purities that were, respectively, 464 nm, 0.96 and 588 nm, 0.98 for the blue target and yellow adapting field.
[CrossRef] [PubMed]

Quick, R. F.

R. F. Quick, “A Vector-Magnitude Model of Contrast Detection,” Kybernetik 16, 65 (1974).
[CrossRef] [PubMed]

Schein, S. J.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).

Sparrock, J. M. B.

R. A. Bone, J. M. B. Sparrock, “Comparison of Macular Pigment Densities in Human Eyes,” Vision Res. 11, 1057 (1971)J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and Human Macular Pigment Density,” Vision Res. 27, 257 (1987)P. L. Pease, A. J. Adams, E. Nuccio, “Optical Density of Human Macular Pigment,” Vision Res. 27, 705 (1987).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, “Increment Thresholds & the Mechanisms of Colour Vision,” Doc. Ophthalmol. 3, 138 (1949)G. S. Brindley, “The Summation Areas of Human Colour-Receptive Mechanisms at Increment-Threshold,” J. Physiol. 124, 400 (1954)N.W. Daw, J. M. Enoch, “Contrast Sensitivity, Westheimer Function and Stiles-Crawford Effect in a Blue Cone Monochromat,” Vision Res. 13, 1669 (1973)R. T. Eskew, R. M. Boynton, “Effects of Field Area and Configuration on Chromatic and Border Discriminations,” Vision Res. 27, 1835 (1987).
[CrossRef] [PubMed]

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982), p. 102.

Thibos, L. N.

Thompson, B. J.

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial Resolution of the Short-Wavelength Mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharp, Eds. (Academic, London, 1983).

Williams, D. R.

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial Resolution of the Short-Wavelength Mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharp, Eds. (Academic, London, 1983).

Wilson, H. R.

H. R. Wilson, R. Blake, J. Pokorny, “Limits of Binocular Fusion in the Short Wave Sensitive (‘Blue’) Cones,” Vision Res. 28, 555 (1988). Wilson et al. reported that this system yielded dominant wavelengths and colorimetric purities that were, respectively, 464 nm, 0.96 and 588 nm, 0.98 for the blue target and yellow adapting field.
[CrossRef] [PubMed]

Wolfe, J. M.

J. M. Wolfe, D. A. Owens, “Is Accommodation Colorblind? Focusing Chromatic Contours,” Perception 10, 53 (1981).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982), p. 102.

Yokoyama, M.

Y. Nakai, T. Ohara, M. Yokoyama, “Visual Acuity of the Blue Cone System and Its Clinical Use,” Jpn. J. Ophthalmol. 35, 1295 (1981).

Doc. Ophthalmol. (1)

W. S. Stiles, “Increment Thresholds & the Mechanisms of Colour Vision,” Doc. Ophthalmol. 3, 138 (1949)G. S. Brindley, “The Summation Areas of Human Colour-Receptive Mechanisms at Increment-Threshold,” J. Physiol. 124, 400 (1954)N.W. Daw, J. M. Enoch, “Contrast Sensitivity, Westheimer Function and Stiles-Crawford Effect in a Blue Cone Monochromat,” Vision Res. 13, 1669 (1973)R. T. Eskew, R. M. Boynton, “Effects of Field Area and Configuration on Chromatic and Border Discriminations,” Vision Res. 27, 1835 (1987).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (2)

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Visual Sci. 26, 289 (1985).

D. C. Hood, N. I. Benimoff, V. C. Greenstein, “The Response Range of the Blue-Cone Pathways: a Source of Vulnerability to Disease,” Invest. Ophthalmol. Visual Sci. 25, 864 (1984).

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed Up-Down Methods in Psychoacoustics,” J. Acoust. Soc. Am. 49, 467 (1970).
[CrossRef]

J. Comp. Neurol. (1)

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a Subtype of Cone Photoreceptor, Likely to be Blue Sensitive, in the Human Retina,” J. Comp. Neurol. 255, 18 (1987).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol (1)

D. G. Green, “Visual Acuity in the Blue Cone Monochromat,” J. Physiol. 222, 419 (1972)D. H. Kelly, “Spatio-Temporal Frequency Characteristics of Color-Vision Mechanisms,” J. Opt. Soc. Am. 64, 983 (1974)C. R. Cavonius, O. Estevez, “Contrast Sensitivity of Individual Colour Mechanisms of Human Vision,” J. Physiol. 248, 649 (1975)C. F. Stromeyer, K. Kranda, C. Sternheim, “Selective Chromatic Adaptation at Different Spatial Frequencies,” Vision Res. 18, 427 (1978).
[CrossRef] [PubMed]

Jpn. J. Ophthalmol. (1)

Y. Nakai, T. Ohara, M. Yokoyama, “Visual Acuity of the Blue Cone System and Its Clinical Use,” Jpn. J. Ophthalmol. 35, 1295 (1981).

Kybernetik (1)

R. F. Quick, “A Vector-Magnitude Model of Contrast Detection,” Kybernetik 16, 65 (1974).
[CrossRef] [PubMed]

Perception (1)

J. M. Wolfe, D. A. Owens, “Is Accommodation Colorblind? Focusing Chromatic Contours,” Perception 10, 53 (1981).
[CrossRef] [PubMed]

Psychol. Bull. (1)

B. J. Fellows, “Chance Stimulus Sequences for Discrimination Tasks,” Psychol. Bull. 67, 87 (1967).
[CrossRef] [PubMed]

Vision Res. (2)

R. A. Bone, J. M. B. Sparrock, “Comparison of Macular Pigment Densities in Human Eyes,” Vision Res. 11, 1057 (1971)J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and Human Macular Pigment Density,” Vision Res. 27, 257 (1987)P. L. Pease, A. J. Adams, E. Nuccio, “Optical Density of Human Macular Pigment,” Vision Res. 27, 705 (1987).
[CrossRef] [PubMed]

H. R. Wilson, R. Blake, J. Pokorny, “Limits of Binocular Fusion in the Short Wave Sensitive (‘Blue’) Cones,” Vision Res. 28, 555 (1988). Wilson et al. reported that this system yielded dominant wavelengths and colorimetric purities that were, respectively, 464 nm, 0.96 and 588 nm, 0.98 for the blue target and yellow adapting field.
[CrossRef] [PubMed]

Other (4)

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982), p. 102.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Eds., Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).

M. Marre, “Clinical Examination of the Three Color Vision Mechanisms in Acquired Color Vision Defects,” Mod. Probl. Ophthalmol.11, 224 (1972)M. A. Sandberg, E. L. Berson, “Blue and Green Cone Mechanisms in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 16, 149 (1977)R. S. L. Young, “Early-Stage Abnormality of Foveal Pi Mechanisms in a Patient with Retinitis Pigmentosa,” J. Opt. Soc. Am. 72, 1021 (1982)A. J. Adams, B. Schefrin, K. Huie, “New Clinical Color Threshold Test for Eye Disease,” Am. J. Optom. Physiol. Optics 64, 29 (1987)G. Haegerstrom-Portnoy, B. Brown, “Two-Color Increment Thresholds in Early Age-Related Maculopathy,” Clin. Vision Sci.00, 000 (198X), in press.
[CrossRef] [PubMed]

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial Resolution of the Short-Wavelength Mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharp, Eds. (Academic, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Contrast sensitivity data for 20-cd/m2 yellow gratings superimposed on a 3-log cd/m2 yellow background (open circles) and acuity data for 7-cd/m2 blue gratings superimposed on a yellow background of varying luminance (closed circles). Contrast sensitivity is indicated on the left ordinate and equivalent background luminance for the acuity data is indicated on the right ordinate. When equivalent contrast for the blue gratings is less than threshold for the yellow gratings, acuity is mediated by the SWS cones and is independent of background luminance. The horizontal line indicates the background luminance used for SWS cone acuity measurements.

Fig. 2
Fig. 2

(a) Scatterplot of SWS cone acuities for thirty-two observers (normals and patients) measured with two procedures (frequency-of-seeing and staircase). (b) Scatterplot of SWS cone acuities for 149 observers obtained with two repetitions of the staircase procedure.

Fig. 3
Fig. 3

Frequency distribution of SWS cone acuities for eighty-three normal observers. LogMAR values along the x axis indicate the center of each acuity category.

Fig. 4
Fig. 4

SWS cone acuity as a function of the amount of attenuation of the blue grating (in log units) for nine normal observers. The dotted line represents the mean value for eighty-three normal observers, the dashed lines represent ±2 standard deviations.

Fig. 5
Fig. 5

SWS cone acuity as a function of the number of bars in the gratings for six normal observers. The dotted line represents the mean value for eighty-three normal observers, the dashed lines represent ±2 standard deviations.

Fig. 6
Fig. 6

SWS cone acuity as a function of the power of the corrective lens at the eyepiece. Solid symbols represent data for observers with high logMAR values at −1 diopter (the lens used in the other experiments), open symbols represent data for observers with low logMAR values at −1 diopter. The dotted line represents the mean value for eighty-three normal observers, the dashed lines represent ±2 standard deviations. (a) Data for seven normal observers, gathered without cycloplegia. (b) Circles are data for two normal observers, gathered under cycloplegia. Triangles are data at −1 diopter gathered without cycloplegia, replotted from (a).

Tables (2)

Tables Icon

Table I Population Statistics for SWS Cone Acuities of Normal Observers Expressed as the Logarithm of the Minimum Angle of Resolution (IogMAR)

Tables Icon

Table II Population Distribution for Normal Observers by Decade

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( ω ) = 1.0 0.5 [ 2 ( α / ω ) β ] ,

Metrics