Abstract

Changes in the response characteristics of the flash electroretinogram (ERG) of the human cone system were studied during the time course of adaptation to a cone-isolating ganzfeld background. During light adaptation, the amplitudes of the b- and i-waves increased, while the implicit time of the b-wave decreased. The amplitude of the a-wave and the implicit times of the a- and i -waves did not change systematically during light adaptation. Luminance-response functions for b-wave amplitude were obtained at discrete times following background onset and were analyzed using the hyperbolic equation R/Rmax= Ln/(Ln+ Kn). The increase in b-wave amplitude was characterized by increases in Rmax, K, and n. The decrease in b-wave implicit time was of a similar magnitude at all flash luminances. The amplitude increase of the i-wave only occurred at moderate flash luminances. The results provide a basis for optimizing the clinical recording of cone-isolated single-flash ERGs.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Burian, “Electric Responses of the Human Visual System,” Arch. Ophthalmol. 51, 509 (1954).
    [CrossRef]
  2. J. C. Armington, W. R. Biersdorf, “Long-Term Light Adaptation of the Human Electroretinogram,” J. Comp. Physiol. Psychol. 51, 1 (1958).
    [CrossRef] [PubMed]
  3. W. R. Biersdorf, J. C. Armington, “Level of Light Adaptation and the Human Electroretinogram,” J. Opt. Soc. Am. 50, 78 (1960).
    [CrossRef] [PubMed]
  4. P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
    [PubMed]
  5. P. Lachapelle, “Analysis of the Photopic Electroretinogram Recorded Before and After Dark Adaptation,” Can. J. Ophthalmol. 22, 354 (1987).
    [PubMed]
  6. Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).
  7. R. G. Weleber, A. Eisner, “Retinal Function and Physiological Studies,” in Retinal Dystrophies and Degeneration, D. A. Newsome, Ed. (Raven Press, New York, 1988), Chap. 3.
  8. A similar effect has been noted for the cone flicker ERG in the frog9 and man.10
  9. D. C. Hood, “Adaptational Changes in the Cone System of the Isolated Frog Retina,” Vision Res. 12, 875 (1972).
    [CrossRef] [PubMed]
  10. Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
    [PubMed]
  11. N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
    [PubMed]
  12. M. Nagata, “Studies on the Photopic ERG of the Human Retina,” Jpn. J. Ophthalmol. 7, 96 (1963).
  13. N. S. Peachey, K. R. Alexander, G. A. Fishman, “The Luminance-Response Function of the Dark-Adapted Human Electroretinogram,” Vision Res. (to be published).
  14. The time constant of the exponential fitted to K was 2.85 min, slightly longer than that for log K.
  15. A similar luminance-response function has been reported for the ground squirrel d-wave by K. Tansley, R. M. Copenhaver, R.D. Gunkel, “Some Observations on the Off-Effect of the Mammalian Cone Electroretinogram,” J. Opt. Soc. Am. 51, 207 (1961).
    [CrossRef] [PubMed]
  16. R. H. Steinberg, R. A. Linsenmeier, E. R. Griff, “Retinal Pigment Epithelial Cell Contributions to the Electroretinogram and Electrooculogram,” Prog. Retinal Res. 4, 33 (1985).
    [CrossRef]
  17. N. S. Peachey, G. A. Fishman, unpublished observations on four patients.
  18. R. A. Normann, I. Perlman, “The Effects of Background Illumination on the Photoresponses of Red and Green Cones,” J. Physiol. 286, 491 (1979).
    [PubMed]
  19. R. A. Normann, F. S. Werblin, “Control of Retinal Sensitivity. I. Light and Dark Adaptation of Vertebrate Rods and Cones,” J. Gen. Physiol. 63, 37 (1974).
    [CrossRef] [PubMed]
  20. H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
    [CrossRef] [PubMed]
  21. K. Nakatani, K.-W. Yau, “Calcium and Light Adaptation in Retinal Rods and Cones,” Nature London 334, 69 (1988).
    [CrossRef] [PubMed]
  22. R. D. Penn, W. A. Hagins, “Signal Transmission Along Retinal Rods and the Origin of the Electroretinographic a-Wave,” Nature London 223, 201 (1969).
    [CrossRef] [PubMed]

1988 (4)

Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).

N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
[PubMed]

H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
[CrossRef] [PubMed]

K. Nakatani, K.-W. Yau, “Calcium and Light Adaptation in Retinal Rods and Cones,” Nature London 334, 69 (1988).
[CrossRef] [PubMed]

1987 (2)

Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
[PubMed]

P. Lachapelle, “Analysis of the Photopic Electroretinogram Recorded Before and After Dark Adaptation,” Can. J. Ophthalmol. 22, 354 (1987).
[PubMed]

1985 (2)

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

R. H. Steinberg, R. A. Linsenmeier, E. R. Griff, “Retinal Pigment Epithelial Cell Contributions to the Electroretinogram and Electrooculogram,” Prog. Retinal Res. 4, 33 (1985).
[CrossRef]

1979 (1)

R. A. Normann, I. Perlman, “The Effects of Background Illumination on the Photoresponses of Red and Green Cones,” J. Physiol. 286, 491 (1979).
[PubMed]

1974 (1)

R. A. Normann, F. S. Werblin, “Control of Retinal Sensitivity. I. Light and Dark Adaptation of Vertebrate Rods and Cones,” J. Gen. Physiol. 63, 37 (1974).
[CrossRef] [PubMed]

1972 (1)

D. C. Hood, “Adaptational Changes in the Cone System of the Isolated Frog Retina,” Vision Res. 12, 875 (1972).
[CrossRef] [PubMed]

1969 (1)

R. D. Penn, W. A. Hagins, “Signal Transmission Along Retinal Rods and the Origin of the Electroretinographic a-Wave,” Nature London 223, 201 (1969).
[CrossRef] [PubMed]

1963 (1)

M. Nagata, “Studies on the Photopic ERG of the Human Retina,” Jpn. J. Ophthalmol. 7, 96 (1963).

1961 (1)

1960 (1)

1958 (1)

J. C. Armington, W. R. Biersdorf, “Long-Term Light Adaptation of the Human Electroretinogram,” J. Comp. Physiol. Psychol. 51, 1 (1958).
[CrossRef] [PubMed]

1954 (1)

H. M. Burian, “Electric Responses of the Human Visual System,” Arch. Ophthalmol. 51, 509 (1954).
[CrossRef]

Alexander, K. R.

N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
[PubMed]

N. S. Peachey, K. R. Alexander, G. A. Fishman, “The Luminance-Response Function of the Dark-Adapted Human Electroretinogram,” Vision Res. (to be published).

Armington, J. C.

W. R. Biersdorf, J. C. Armington, “Level of Light Adaptation and the Human Electroretinogram,” J. Opt. Soc. Am. 50, 78 (1960).
[CrossRef] [PubMed]

J. C. Armington, W. R. Biersdorf, “Long-Term Light Adaptation of the Human Electroretinogram,” J. Comp. Physiol. Psychol. 51, 1 (1958).
[CrossRef] [PubMed]

Biersdorf, W. R.

W. R. Biersdorf, J. C. Armington, “Level of Light Adaptation and the Human Electroretinogram,” J. Opt. Soc. Am. 50, 78 (1960).
[CrossRef] [PubMed]

J. C. Armington, W. R. Biersdorf, “Long-Term Light Adaptation of the Human Electroretinogram,” J. Comp. Physiol. Psychol. 51, 1 (1958).
[CrossRef] [PubMed]

Burian, H. M.

H. M. Burian, “Electric Responses of the Human Visual System,” Arch. Ophthalmol. 51, 509 (1954).
[CrossRef]

Copenhaver, R. M.

Derlacki, D. J.

N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
[PubMed]

Eggers, H.

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Eisner, A.

R. G. Weleber, A. Eisner, “Retinal Function and Physiological Studies,” in Retinal Dystrophies and Degeneration, D. A. Newsome, Ed. (Raven Press, New York, 1988), Chap. 3.

Fain, G. L.

H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
[CrossRef] [PubMed]

Fishman, G. A.

N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
[PubMed]

N. S. Peachey, K. R. Alexander, G. A. Fishman, “The Luminance-Response Function of the Dark-Adapted Human Electroretinogram,” Vision Res. (to be published).

N. S. Peachey, G. A. Fishman, unpublished observations on four patients.

Gouras, P.

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Griff, E. R.

R. H. Steinberg, R. A. Linsenmeier, E. R. Griff, “Retinal Pigment Epithelial Cell Contributions to the Electroretinogram and Electrooculogram,” Prog. Retinal Res. 4, 33 (1985).
[CrossRef]

Gunkel, R.D.

Hagins, W. A.

R. D. Penn, W. A. Hagins, “Signal Transmission Along Retinal Rods and the Origin of the Electroretinographic a-Wave,” Nature London 223, 201 (1969).
[CrossRef] [PubMed]

Hood, D. C.

D. C. Hood, “Adaptational Changes in the Cone System of the Isolated Frog Retina,” Vision Res. 12, 875 (1972).
[CrossRef] [PubMed]

Horiguchi, M.

Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).

Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
[PubMed]

Ivert, L.

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Lachapelle, P.

P. Lachapelle, “Analysis of the Photopic Electroretinogram Recorded Before and After Dark Adaptation,” Can. J. Ophthalmol. 22, 354 (1987).
[PubMed]

Lamb, T. D.

H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
[CrossRef] [PubMed]

Linsenmeier, R. A.

R. H. Steinberg, R. A. Linsenmeier, E. R. Griff, “Retinal Pigment Epithelial Cell Contributions to the Electroretinogram and Electrooculogram,” Prog. Retinal Res. 4, 33 (1985).
[CrossRef]

Mackay, C. J.

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Matthews, H. R.

H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
[CrossRef] [PubMed]

Mittl, R. N.

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Miyake, Y.

Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).

Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
[PubMed]

Murphy, R. L. W.

H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
[CrossRef] [PubMed]

Nagata, M.

M. Nagata, “Studies on the Photopic ERG of the Human Retina,” Jpn. J. Ophthalmol. 7, 96 (1963).

Nakatani, K.

K. Nakatani, K.-W. Yau, “Calcium and Light Adaptation in Retinal Rods and Cones,” Nature London 334, 69 (1988).
[CrossRef] [PubMed]

Neuwirth, J.

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Normann, R. A.

R. A. Normann, I. Perlman, “The Effects of Background Illumination on the Photoresponses of Red and Green Cones,” J. Physiol. 286, 491 (1979).
[PubMed]

R. A. Normann, F. S. Werblin, “Control of Retinal Sensitivity. I. Light and Dark Adaptation of Vertebrate Rods and Cones,” J. Gen. Physiol. 63, 37 (1974).
[CrossRef] [PubMed]

Ota, I.

Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).

Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
[PubMed]

Peachey, N. S.

N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
[PubMed]

N. S. Peachey, K. R. Alexander, G. A. Fishman, “The Luminance-Response Function of the Dark-Adapted Human Electroretinogram,” Vision Res. (to be published).

N. S. Peachey, G. A. Fishman, unpublished observations on four patients.

Penn, R. D.

R. D. Penn, W. A. Hagins, “Signal Transmission Along Retinal Rods and the Origin of the Electroretinographic a-Wave,” Nature London 223, 201 (1969).
[CrossRef] [PubMed]

Perlman, I.

R. A. Normann, I. Perlman, “The Effects of Background Illumination on the Photoresponses of Red and Green Cones,” J. Physiol. 286, 491 (1979).
[PubMed]

Shiroyama, N.

Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
[PubMed]

Steinberg, R. H.

R. H. Steinberg, R. A. Linsenmeier, E. R. Griff, “Retinal Pigment Epithelial Cell Contributions to the Electroretinogram and Electrooculogram,” Prog. Retinal Res. 4, 33 (1985).
[CrossRef]

Tansley, K.

Tokabayashi, A.

Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).

Weleber, R. G.

R. G. Weleber, A. Eisner, “Retinal Function and Physiological Studies,” in Retinal Dystrophies and Degeneration, D. A. Newsome, Ed. (Raven Press, New York, 1988), Chap. 3.

Werblin, F. S.

R. A. Normann, F. S. Werblin, “Control of Retinal Sensitivity. I. Light and Dark Adaptation of Vertebrate Rods and Cones,” J. Gen. Physiol. 63, 37 (1974).
[CrossRef] [PubMed]

Yau, K.-W.

K. Nakatani, K.-W. Yau, “Calcium and Light Adaptation in Retinal Rods and Cones,” Nature London 334, 69 (1988).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

H. M. Burian, “Electric Responses of the Human Visual System,” Arch. Ophthalmol. 51, 509 (1954).
[CrossRef]

Can. J. Ophthalmol. (1)

P. Lachapelle, “Analysis of the Photopic Electroretinogram Recorded Before and After Dark Adaptation,” Can. J. Ophthalmol. 22, 354 (1987).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

Y. Miyake, M. Horiguchi, I. Ota, N. Shiroyama, “Characteristic ERG Flicker Anomaly in Incomplete Congenital Stationary Night Blindness,” Invest. Ophthalmol. Vis. Sci. 28, 1816 (1987).
[PubMed]

J. Comp. Physiol. Psychol. (1)

J. C. Armington, W. R. Biersdorf, “Long-Term Light Adaptation of the Human Electroretinogram,” J. Comp. Physiol. Psychol. 51, 1 (1958).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

R. A. Normann, F. S. Werblin, “Control of Retinal Sensitivity. I. Light and Dark Adaptation of Vertebrate Rods and Cones,” J. Gen. Physiol. 63, 37 (1974).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (1)

R. A. Normann, I. Perlman, “The Effects of Background Illumination on the Photoresponses of Red and Green Cones,” J. Physiol. 286, 491 (1979).
[PubMed]

Jpn. J. Ophthalmol. (1)

M. Nagata, “Studies on the Photopic ERG of the Human Retina,” Jpn. J. Ophthalmol. 7, 96 (1963).

Nature London (3)

H. R. Matthews, R. L. W. Murphy, G. L. Fain, T. D. Lamb, “Photoreceptor Light Adaptation is Mediated by Cytoplasmic Calcium Concentration,” Nature London 334, 67 (1988).
[CrossRef] [PubMed]

K. Nakatani, K.-W. Yau, “Calcium and Light Adaptation in Retinal Rods and Cones,” Nature London 334, 69 (1988).
[CrossRef] [PubMed]

R. D. Penn, W. A. Hagins, “Signal Transmission Along Retinal Rods and the Origin of the Electroretinographic a-Wave,” Nature London 223, 201 (1969).
[CrossRef] [PubMed]

Neurosci. Res. (1)

Y. Miyake, M. Horiguchi, I. Ota, A. Tokabayashi, “Adaptational Change in Cone-Mediated Electroretinogram in Human and Carp,” Neurosci. Res. Suppl. 8, S1 (1988).

Ophthalmology (2)

N. S. Peachey, G. A. Fishman, D. J. Derlacki, K. R. Alexander, “Rod and Cone Dysfunction in Carriers of X-Linked Retinitis Pigmentosa,” Ophthalmology 95, 677 (1988).
[PubMed]

P. Gouras, C. J. Mackay, L. Ivert, R. N. Mittl, J. Neuwirth, H. Eggers, “Computer-Assisted Spectral Electroretinography in Vitrectomy Patients,” Ophthalmology 92, 83 (1985);C. J. MacKay, P. Gouras, “Light-Adaptation Augments the Amplitude of the Human Cone ERG,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 323 (1985).
[PubMed]

Prog. Retinal Res. (1)

R. H. Steinberg, R. A. Linsenmeier, E. R. Griff, “Retinal Pigment Epithelial Cell Contributions to the Electroretinogram and Electrooculogram,” Prog. Retinal Res. 4, 33 (1985).
[CrossRef]

Vision Res. (1)

D. C. Hood, “Adaptational Changes in the Cone System of the Isolated Frog Retina,” Vision Res. 12, 875 (1972).
[CrossRef] [PubMed]

Other (5)

R. G. Weleber, A. Eisner, “Retinal Function and Physiological Studies,” in Retinal Dystrophies and Degeneration, D. A. Newsome, Ed. (Raven Press, New York, 1988), Chap. 3.

A similar effect has been noted for the cone flicker ERG in the frog9 and man.10

N. S. Peachey, G. A. Fishman, unpublished observations on four patients.

N. S. Peachey, K. R. Alexander, G. A. Fishman, “The Luminance-Response Function of the Dark-Adapted Human Electroretinogram,” Vision Res. (to be published).

The time constant of the exponential fitted to K was 2.85 min, slightly longer than that for log K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

ERGs recorded in response to a flash of 0.44 log cd s/m2 presented at 1 and 21 min following background onset. Amplitudes of the a-wave, b-wave, and i-wave are indicated by the arrows.

Fig. 2
Fig. 2

Amplitude of the b-wave for one subject as a function of time following background onset. Flash luminances (in log cd s/m2) are indicated on the right.

Fig. 3
Fig. 3

Luminance-response functions for the b-wave of one subject obtained at 1 min (open circles) and 21 min (solid circles) following background onset. Solid lines indicate the least-squares fit of Eq. (1) to the data; rms errors were 15.96 and 18.91 at 1 and 21 min, respectively.

Fig. 4
Fig. 4

Parameters of Eq. (1) as a function of time following background onset. Data points represent the means for the three subjects; error bars indicate ±1 SEM. Where omitted, the error bars were smaller than the plotted point. The solid lines represent the least-squares fit of Eq. (2) to the mean values of Rmax, logK, and n, with rms errors of 4.94, 0.03, and 0.11, respectively. Time constants were 4.2, 2.5, and 14.8 min for Rmax, logK, and n, respectively.

Fig. 5
Fig. 5

Implicit time of the b-wave as a function of flash luminance at 1 and 21 min following background onset. Data points represent the means for the three subjects; error bars indicate ±1 SEM. Where omitted, the error bars were smaller than the plotted point.

Fig. 6
Fig. 6

Implicit time of the b-wave response to a flash of 0.87 log cd s/m2 as a function of time following background onset. Data points represent the means for the three subjects; error bars indicate ±1 SEM. Where omitted, the error bars were smaller than the plotted point. The solid line represents the least-squares fit of Eq. (3) with a time constant of 3.7 min and rms error of 0.11.

Fig. 7
Fig. 7

Luminance-response functions for i-wave amplitude measured at 1 and 21 min following background onset. Data points represent the means for the three subjects; error bars indicate ±1 SEM.

Fig. 8
Fig. 8

Amplitude of the i-wave response to a flash of 0.19 log cd s/m2 as a function of time following background onset. Data points represent the means for the three subjects; error bars indicate ±1 SEM. The solid line represents the least-squares fit of Eq. (2) with a time constant of 6.9 min and rms error of 2.98.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R / R max = L n / ( L n + K n ) .
y = a + b × exp ( t / τ )
y = a b × exp ( t / τ )

Metrics