Abstract

A dosimetry technique has been developed which utilizes three-wavelength fundus reflectometry, a quantitative model of fundus reflectance, and a model of thermal tissue damage to control photocoagulation lesion size. The fundus reflectance model uses Lambert-Beer’s law exponential attenuators to describe the ocular media, retinal pigment epithelium (RPE), and choriocapillaris transmission characteristics while the choroid is described as a Kubelka-Munklike homogeneous scatterer/absorber. Three reflecting layers are included in the model at the retinal inner limiting membrane, Bruch’s membrane, and the sclera. Measured lesion size variability contained components which resulted from variations in choroidal blood and melanin and RPE melanin concentration. Photocoagulation dosimetry was found to reduce the photocoagulation lesion size coefficient of variation for red light from 45% to 10% for the control and dosimetry cases, respectively. Similar improvement was noted for yellow photocoagulation light.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).
  2. F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971).
    [CrossRef] [PubMed]
  3. R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977).
    [PubMed]
  4. R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).
  5. V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
    [PubMed]
  6. W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).
  7. W. Lang, E. Weimer, “Apparatus for Dose Measurement upon Photocoagulation in the Fundus of the Eye,” U.S. Pat.4,644,948 (1987).
  8. O. Pomerantzeff, G. T. Timberlake, “Toward Automation in Photocoagulation,” Doc. Ophthalmol. Proc. Ser. 36, 313 (1984).
  9. O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
    [CrossRef] [PubMed]
  10. O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
    [CrossRef] [PubMed]
  11. O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).
  12. O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
    [PubMed]
  13. This maximum permissible exposure refers to the human standard ANSI Z136.1–1976.
  14. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
    [CrossRef] [PubMed]
  15. T. Behrendt, L. A. Wilson, “Spectral Reflectance Photography of the Retina,” Am. J. Ophthalmol. 59, 1079 (1965).
    [PubMed]
  16. F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Fundus Reflectometry and Its Clinical Applications Workshop, Utrecht, The Netherlands (1986).
  17. F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).
  18. F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Appl. Opt. 28, 1061 (1989).
    [CrossRef] [PubMed]
  19. D. Van Norren, L. F. Tiemeijer, “Spectral Reflectance of the Human Eye,” Vis. Res. 26, 313 (1986).
    [CrossRef] [PubMed]
  20. The breed used in this study was a cross breed between white albino and brown rabbits. This produced a lightly pigmented fundus with large enough pigment variations to model human fundus pigmentation variations readily.
  21. N. H. Bakker, “Fundus Reflectometry, an Experimental Study,” Doc. Ophthalmol. 38, 271 (1974).
    [PubMed]
  22. W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
    [CrossRef]
  23. H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
    [PubMed]
  24. R. S. Smith, M. N. Stein, “Ocular Hazards of Transscleral Laser Radiation,” Am. J. Ophthalmol. 66, 21 (1968).
    [PubMed]
  25. R. R. Anderson, J. A. Parish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13 (1981).
    [CrossRef] [PubMed]
  26. J. J. Vos, “A Theory of Retinal Burns,” Bull. Math. Biophys. 24, 115 (1962).
    [CrossRef] [PubMed]
  27. J. J. Vos, “Digital Computations of Temperature in Retinal Burn Problems,” National Defence Research Council TNO Report IZF 1965-16 (1965).
  28. A. M. Clarke, W. J. Geeraets, W. T. Ham, “An Equilibrium Thermal Model for Retinal Injury from Optical Sources,” Appl. Opt. 8, 1051 (1969).
    [CrossRef] [PubMed]
  29. M. A. Mainster, T. J. White, J. H. Tips, P. W. Wilson, “Retinal-Temperature Increases Produced by Intense Light Sources,” J. Opt. Soc. Am. 60, 264 (1970).
    [CrossRef] [PubMed]
  30. M. A. Mainster, T. J. White, R. G. Allen, “Spectral Dependence of Retinal Damage Produced by Intense Light Sources,” J. Opt. Soc. Am. 60, 848 (1970).
    [CrossRef] [PubMed]
  31. T. J. White, M. A. Mainster, J. H. Tips, P. W. Wilson, “Chorioretinal Thermal Behavior,” Bull. Math. Biophys. 32, 315 (1970).
    [CrossRef] [PubMed]
  32. C. P. Cain, A. J. Welch, “Measured and Predicted Laser-Induced Temperature Rises in the Rabbit Fundus,” Invest. Ophthalmol. 13, 60 (1974).
    [PubMed]
  33. A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).
  34. P. Davis, “The Heating of the Skin,” in Temperature: Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold, New York, 1963), pp. 149–169.
  35. J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9, 97 (1970).
    [PubMed]
  36. A. J. Welch, “The Thermal Response of Laser Irradiated Tissue,” IEEE J. Quantum Electron. QE-20, 1471 (1984).
    [CrossRef]
  37. K. P. Pflibsen, O. Pomerantzeff, “Use of Fundus Reflectometry to Predetermine Photocoagulation,” presented at Nineteenth Annual Meeting, Retina Society (1986).
  38. K. P. Pflibsen, “Modeling Reflectance Changes During Photocoagulation,” in Technical Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, DC, 1988), paper THY5.
  39. K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).
  40. J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).
  41. W. Weinberg, “Die Aenderung des Reflexionsvermoegehs der Netzhaut als Mass fuer die raumliche ausdehnung der thermisch induzierten Gewebsschaedigung bei der therapeutischen Photokoagulation,” Ph.D. Dissertation, Fachbereich Physik der U. Frankfurt, F.R. Germany, Institut fuer Biophysik Theodor-Stern-Kai 7 D-6000 Frankfurt 70 (1984).
  42. K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, “Laser Photocoagulation Dosimetry Using Two-Wavelength Fundus Reflectometry,” in Technical Digest of Topical Meeting on Noninvasive Assessment of the Visual System (Optical Society of America, Washington, DC, 1988), pp. 117–120.
  43. K. E. Spells, “The Thermal Conductivity of Some Biological Fluids,” Phys. Med. Biol. 5, 139 (1960).
    [CrossRef]
  44. J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
    [PubMed]
  45. G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969), pp. 116–126.

1989

1987

F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).

1986

K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).

J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
[PubMed]

D. Van Norren, L. F. Tiemeijer, “Spectral Reflectance of the Human Eye,” Vis. Res. 26, 313 (1986).
[CrossRef] [PubMed]

1984

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
[PubMed]

W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).

O. Pomerantzeff, G. T. Timberlake, “Toward Automation in Photocoagulation,” Doc. Ophthalmol. Proc. Ser. 36, 313 (1984).

A. J. Welch, “The Thermal Response of Laser Irradiated Tissue,” IEEE J. Quantum Electron. QE-20, 1471 (1984).
[CrossRef]

J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).

1983

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
[CrossRef] [PubMed]

1981

A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).

R. R. Anderson, J. A. Parish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

1979

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

1977

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
[CrossRef] [PubMed]

1974

N. H. Bakker, “Fundus Reflectometry, an Experimental Study,” Doc. Ophthalmol. 38, 271 (1974).
[PubMed]

C. P. Cain, A. J. Welch, “Measured and Predicted Laser-Induced Temperature Rises in the Rabbit Fundus,” Invest. Ophthalmol. 13, 60 (1974).
[PubMed]

1971

F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971).
[CrossRef] [PubMed]

1970

1969

1968

R. S. Smith, M. N. Stein, “Ocular Hazards of Transscleral Laser Radiation,” Am. J. Ophthalmol. 66, 21 (1968).
[PubMed]

1965

T. Behrendt, L. A. Wilson, “Spectral Reflectance Photography of the Retina,” Am. J. Ophthalmol. 59, 1079 (1965).
[PubMed]

1962

J. J. Vos, “A Theory of Retinal Burns,” Bull. Math. Biophys. 24, 115 (1962).
[CrossRef] [PubMed]

1960

K. E. Spells, “The Thermal Conductivity of Some Biological Fluids,” Phys. Med. Biol. 5, 139 (1960).
[CrossRef]

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

1956

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Allen, R. G.

Anderson, R. R.

R. R. Anderson, J. A. Parish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

Bakker, N. H.

N. H. Bakker, “Fundus Reflectometry, an Experimental Study,” Doc. Ophthalmol. 38, 271 (1974).
[PubMed]

Behrendt, T.

T. Behrendt, L. A. Wilson, “Spectral Reflectance Photography of the Retina,” Am. J. Ophthalmol. 59, 1079 (1965).
[PubMed]

Birngruber, R.

W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).

Cain, C. P.

C. P. Cain, A. J. Welch, “Measured and Predicted Laser-Induced Temperature Rises in the Rabbit Fundus,” Invest. Ophthalmol. 13, 60 (1974).
[PubMed]

Chan, G.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

Clarke, A. M.

Clover, G.

J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).

Davis, P.

P. Davis, “The Heating of the Skin,” in Temperature: Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold, New York, 1963), pp. 149–169.

Delori, F. C.

F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Appl. Opt. 28, 1061 (1989).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).

J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
[PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Fundus Reflectometry and Its Clinical Applications Workshop, Utrecht, The Netherlands (1986).

K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, “Laser Photocoagulation Dosimetry Using Two-Wavelength Fundus Reflectometry,” in Technical Digest of Topical Meeting on Noninvasive Assessment of the Visual System (Optical Society of America, Washington, DC, 1988), pp. 117–120.

Fankhauser, F.

F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971).
[CrossRef] [PubMed]

Fitch, K. A.

F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).

J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
[PubMed]

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
[CrossRef] [PubMed]

Gabel, V.-P.

W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977).
[PubMed]

Geeraets, W. J.

A. M. Clarke, W. J. Geeraets, W. T. Ham, “An Equilibrium Thermal Model for Retinal Injury from Optical Sources,” Appl. Opt. 8, 1051 (1969).
[CrossRef] [PubMed]

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

Goldfinch, L.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

Gragoudas, E. S.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
[CrossRef] [PubMed]

Green, W. R.

A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).

Guerry, D.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Ham, W. T.

A. M. Clarke, W. J. Geeraets, W. T. Ham, “An Equilibrium Thermal Model for Retinal Injury from Optical Sources,” Appl. Opt. 8, 1051 (1969).
[CrossRef] [PubMed]

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

Hillenkamp, F.

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).

Hinds, J. K.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

Kampik, A.

A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).

Kortum, G.

G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969), pp. 116–126.

Kuan, L. P.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

Lang, W.

W. Lang, E. Weimer, “Apparatus for Dose Measurement upon Photocoagulation in the Fundus of the Eye,” U.S. Pat.4,644,948 (1987).

Lorentz, B.

W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).

Lotmar, W.

F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971).
[CrossRef] [PubMed]

Mainster, M. A.

Marshall, J.

J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).

J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9, 97 (1970).
[PubMed]

McCord, R.

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

Michels, R. G.

A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).

Pankratov, M.

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
[CrossRef] [PubMed]

Pankratov, M. M.

K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
[PubMed]

Parish, J. A.

R. R. Anderson, J. A. Parish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

Pflibsen, K. P.

F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Appl. Opt. 28, 1061 (1989).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).

K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).

K. P. Pflibsen, O. Pomerantzeff, “Use of Fundus Reflectometry to Predetermine Photocoagulation,” presented at Nineteenth Annual Meeting, Retina Society (1986).

K. P. Pflibsen, “Modeling Reflectance Changes During Photocoagulation,” in Technical Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, DC, 1988), paper THY5.

K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, “Laser Photocoagulation Dosimetry Using Two-Wavelength Fundus Reflectometry,” in Technical Digest of Topical Meeting on Noninvasive Assessment of the Visual System (Optical Society of America, Washington, DC, 1988), pp. 117–120.

F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Fundus Reflectometry and Its Clinical Applications Workshop, Utrecht, The Netherlands (1986).

Pomerantzeff, O.

K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).

O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
[PubMed]

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

O. Pomerantzeff, G. T. Timberlake, “Toward Automation in Photocoagulation,” Doc. Ophthalmol. Proc. Ser. 36, 313 (1984).

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
[CrossRef] [PubMed]

K. P. Pflibsen, O. Pomerantzeff, “Use of Fundus Reflectometry to Predetermine Photocoagulation,” presented at Nineteenth Annual Meeting, Retina Society (1986).

K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, “Laser Photocoagulation Dosimetry Using Two-Wavelength Fundus Reflectometry,” in Technical Digest of Topical Meeting on Noninvasive Assessment of the Visual System (Optical Society of America, Washington, DC, 1988), pp. 117–120.

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
[CrossRef] [PubMed]

Rice, T. A.

A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).

Rothery, S.

J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).

Roulier, A.

F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971).
[CrossRef] [PubMed]

Ruffin, R. S.

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Schepens, C. L.

O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
[PubMed]

Schmidt, F. H.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Schneider, J.

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
[CrossRef] [PubMed]

Schneider-Goren, J.

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

Smith, R. S.

R. S. Smith, M. N. Stein, “Ocular Hazards of Transscleral Laser Radiation,” Am. J. Ophthalmol. 66, 21 (1968).
[PubMed]

Spells, K. E.

K. E. Spells, “The Thermal Conductivity of Some Biological Fluids,” Phys. Med. Biol. 5, 139 (1960).
[CrossRef]

Stein, M. N.

R. S. Smith, M. N. Stein, “Ocular Hazards of Transscleral Laser Radiation,” Am. J. Ophthalmol. 66, 21 (1968).
[PubMed]

Takata, A. N.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

Thomopoulis, N.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

Tiemeijer, L. F.

D. Van Norren, L. F. Tiemeijer, “Spectral Reflectance of the Human Eye,” Vis. Res. 26, 313 (1986).
[CrossRef] [PubMed]

Tiller, C. O.

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Timberlake, G.

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

Timberlake, G. T.

O. Pomerantzeff, G. T. Timberlake, “Toward Automation in Photocoagulation,” Doc. Ophthalmol. Proc. Ser. 36, 313 (1984).

Tips, J. H.

M. A. Mainster, T. J. White, J. H. Tips, P. W. Wilson, “Retinal-Temperature Increases Produced by Intense Light Sources,” J. Opt. Soc. Am. 60, 264 (1970).
[CrossRef] [PubMed]

T. J. White, M. A. Mainster, J. H. Tips, P. W. Wilson, “Chorioretinal Thermal Behavior,” Bull. Math. Biophys. 32, 315 (1970).
[CrossRef] [PubMed]

Van Norren, D.

D. Van Norren, L. F. Tiemeijer, “Spectral Reflectance of the Human Eye,” Vis. Res. 26, 313 (1986).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, “A Theory of Retinal Burns,” Bull. Math. Biophys. 24, 115 (1962).
[CrossRef] [PubMed]

J. J. Vos, “Digital Computations of Temperature in Retinal Burn Problems,” National Defence Research Council TNO Report IZF 1965-16 (1965).

Wang, G. J.

O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
[PubMed]

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
[CrossRef] [PubMed]

Weigandt, A.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

Weimer, E.

W. Lang, E. Weimer, “Apparatus for Dose Measurement upon Photocoagulation in the Fundus of the Eye,” U.S. Pat.4,644,948 (1987).

Weinberg, W.

W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

W. Weinberg, “Die Aenderung des Reflexionsvermoegehs der Netzhaut als Mass fuer die raumliche ausdehnung der thermisch induzierten Gewebsschaedigung bei der therapeutischen Photokoagulation,” Ph.D. Dissertation, Fachbereich Physik der U. Frankfurt, F.R. Germany, Institut fuer Biophysik Theodor-Stern-Kai 7 D-6000 Frankfurt 70 (1984).

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
[PubMed]

Welch, A. J.

A. J. Welch, “The Thermal Response of Laser Irradiated Tissue,” IEEE J. Quantum Electron. QE-20, 1471 (1984).
[CrossRef]

C. P. Cain, A. J. Welch, “Measured and Predicted Laser-Induced Temperature Rises in the Rabbit Fundus,” Invest. Ophthalmol. 13, 60 (1974).
[PubMed]

White, T. J.

Wiesinger, H.

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Williams, R. C.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

Wilson, L. A.

T. Behrendt, L. A. Wilson, “Spectral Reflectance Photography of the Retina,” Am. J. Ophthalmol. 59, 1079 (1965).
[PubMed]

Wilson, P. W.

M. A. Mainster, T. J. White, J. H. Tips, P. W. Wilson, “Retinal-Temperature Increases Produced by Intense Light Sources,” J. Opt. Soc. Am. 60, 264 (1970).
[CrossRef] [PubMed]

T. J. White, M. A. Mainster, J. H. Tips, P. W. Wilson, “Chorioretinal Thermal Behavior,” Bull. Math. Biophys. 32, 315 (1970).
[CrossRef] [PubMed]

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
[PubMed]

Am. J. Ophthalmol.

T. Behrendt, L. A. Wilson, “Spectral Reflectance Photography of the Retina,” Am. J. Ophthalmol. 59, 1079 (1965).
[PubMed]

H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956).
[PubMed]

R. S. Smith, M. N. Stein, “Ocular Hazards of Transscleral Laser Radiation,” Am. J. Ophthalmol. 66, 21 (1968).
[PubMed]

Appl. Opt.

Arch. Ophthalmol.

W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960).
[CrossRef]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983).
[CrossRef] [PubMed]

O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983).
[CrossRef] [PubMed]

F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971).
[CrossRef] [PubMed]

Ber. Dtsch. Ophthal. Ges.

A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).

Ber. Dtsch. Ophthalmol. Ges.

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).

Bull. Math. Biophys.

J. J. Vos, “A Theory of Retinal Burns,” Bull. Math. Biophys. 24, 115 (1962).
[CrossRef] [PubMed]

T. J. White, M. A. Mainster, J. H. Tips, P. W. Wilson, “Chorioretinal Thermal Behavior,” Bull. Math. Biophys. 32, 315 (1970).
[CrossRef] [PubMed]

Doc. Ophthalmol.

N. H. Bakker, “Fundus Reflectometry, an Experimental Study,” Doc. Ophthalmol. 38, 271 (1974).
[PubMed]

Doc. Ophthalmol. Proc. Ser.

O. Pomerantzeff, G. T. Timberlake, “Toward Automation in Photocoagulation,” Doc. Ophthalmol. Proc. Ser. 36, 313 (1984).

W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).

J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).

IEEE J. Quantum Electron.

A. J. Welch, “The Thermal Response of Laser Irradiated Tissue,” IEEE J. Quantum Electron. QE-20, 1471 (1984).
[CrossRef]

Invest. Ophthalmol.

C. P. Cain, A. J. Welch, “Measured and Predicted Laser-Induced Temperature Rises in the Rabbit Fundus,” Invest. Ophthalmol. 13, 60 (1974).
[PubMed]

J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9, 97 (1970).
[PubMed]

Invest. Ophthalmol. Vis. Sci.

J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
[PubMed]

Invest. Ophthalmol. Visual Sci.

K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).

O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).

F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).

J. Invest. Dermatol.

R. R. Anderson, J. A. Parish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Mod. Probl. Ophthalmol.

V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979).
[PubMed]

R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977).
[PubMed]

Ophthalmology

O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984).
[PubMed]

Phys. Med. Biol.

K. E. Spells, “The Thermal Conductivity of Some Biological Fluids,” Phys. Med. Biol. 5, 139 (1960).
[CrossRef]

Vis. Res.

D. Van Norren, L. F. Tiemeijer, “Spectral Reflectance of the Human Eye,” Vis. Res. 26, 313 (1986).
[CrossRef] [PubMed]

Other

The breed used in this study was a cross breed between white albino and brown rabbits. This produced a lightly pigmented fundus with large enough pigment variations to model human fundus pigmentation variations readily.

J. J. Vos, “Digital Computations of Temperature in Retinal Burn Problems,” National Defence Research Council TNO Report IZF 1965-16 (1965).

K. P. Pflibsen, O. Pomerantzeff, “Use of Fundus Reflectometry to Predetermine Photocoagulation,” presented at Nineteenth Annual Meeting, Retina Society (1986).

K. P. Pflibsen, “Modeling Reflectance Changes During Photocoagulation,” in Technical Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, DC, 1988), paper THY5.

A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).

P. Davis, “The Heating of the Skin,” in Temperature: Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold, New York, 1963), pp. 149–169.

This maximum permissible exposure refers to the human standard ANSI Z136.1–1976.

F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Fundus Reflectometry and Its Clinical Applications Workshop, Utrecht, The Netherlands (1986).

W. Lang, E. Weimer, “Apparatus for Dose Measurement upon Photocoagulation in the Fundus of the Eye,” U.S. Pat.4,644,948 (1987).

G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969), pp. 116–126.

W. Weinberg, “Die Aenderung des Reflexionsvermoegehs der Netzhaut als Mass fuer die raumliche ausdehnung der thermisch induzierten Gewebsschaedigung bei der therapeutischen Photokoagulation,” Ph.D. Dissertation, Fachbereich Physik der U. Frankfurt, F.R. Germany, Institut fuer Biophysik Theodor-Stern-Kai 7 D-6000 Frankfurt 70 (1984).

K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, “Laser Photocoagulation Dosimetry Using Two-Wavelength Fundus Reflectometry,” in Technical Digest of Topical Meeting on Noninvasive Assessment of the Visual System (Optical Society of America, Washington, DC, 1988), pp. 117–120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reflectometer/photocoagulator system. (a) Schematic diagram of the system; see text for explanation of symbols. (b) Arrangement of illumination, visualization, and measurement pupils in the pupil of the rabbit eye.

Fig. 2
Fig. 2

Fundus reflectance models considered in this study; see text for explanation of symbols. The arrowed lines denote illumination and reflected light components in each of the models. (a) Model I uses a single reflecting layer at the sclera with the retinal pigment epithelium (RPE), choroicapillaris, and choroid represented by Lambert-Beer’s law attenuators. (b) Model II adds reflecting layers at the retinal inner limiting membrane and Bruch membrane to Model I. (c) Model III replaces the Lambert-Beer’s law choroid of model II with a Kubelka-Munklike homogeneous scatterer/absorber.

Fig. 3
Fig. 3

Schematic diagram of the thermal damage model. The model begins by determining the grid points in time and space over which the model will calculate a solution. The next module of the model calculates the energy absorbed at each grid point in time and space and stores these values for later use. The absorbed energy information passes to the next module which calculates the temperature profile in the fundus from the start of laser irradiation until the tissue temperature has returned to some previously specified temperature. The calculated temperature information is then transferred to the thermal damage routine which calculates the accumulated damage at each point in space and stores this information for later output. After the first pass through the model the damage information is used to calculate a correction due to tissue optical changes during photocoagulation and this information is used to recalculate the energy absorbed at each point in space and time. The damage calculation process is repeated once more using the temperature data calculated using corrected tissue optical properties and the results of these damage calculations are output.

Fig 4
Fig 4

Scatterplot of the predicted lesion sizes against measured lesion size. (a) The predicatd lesion size is calculated using choroidal absorbance information obtained from three-wavelength reflectance data while the RPE absorbance is held constant at 310 cm–1. (b) The predicted size is calculated using choroidal absorbance information obtained as in (a). The RPE absorbance is adjusted based on information obtained from neighboring photocoagulation lesions.

Fig. 5
Fig. 5

Photocoagulation dosimetry method. A site is chosen for photocoagulation. After selection of a photocoagulation site threewavelength fundus reflectometry is performed on the site. The fundus reflectance model is used to estimate the choroidal melanin and hemoglobin absorbance of the site and the data input into the thermal damage model. Nominal photocoagulation parameters are used to calculate a lesion size and the predicted size is compared with the desired size. If there is a significant discrepancy, the theoretical laser power level is adjusted and the lesion size recalculated. When the desired lesion size is obtained from the thermal damage model the laser photocoagulation power is adjusted to the level used in the prediction and the site is photocoagulated. The postphotocoagulation reflectance of the site is measured and compared with the prephotocoagulation values to determine the size of the actual photocoagulation lesion. The value of the RPE melanin absorbance in the thermal damage model is adjusted to bring the model lesion size prediction into agreement with the actual lesion size determined by the reflectometric method. This new RPE absorbance value is used in the thermal damage and fundus reflectometry models for dosimetry on the sites adjacent to the photocoagulated site and further photocoagulations are made.

Tables (5)

Tables Icon

Table I Comparison of Experimental Reflectances with Each of the Proposed Fundus Reflectance Models

Tables Icon

Table II Fundus Reflectometry Model Parametersa

Tables Icon

Table III Thermal Model Verification Data, Fixed RPE Absorbancea

Tables Icon

Table IV Thermal Model Verification Data, Adjustable RPE Absorbance

Tables Icon

Table V Results of Dosimetry Experimentsa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

r = r s c l * exp { 2 * [ A o m * t o m + A RPE * α * t RPE + A c c * t c c + ( A c h m * α + A c h b ) * t c h ] }  ,
r = exp ( 2 * A o m * t o m ) [ r i l m + ( 1 r i l m ) * exp [ ( 2 * A RPE * α * t RPE ) ] × ( r b m + ( 1 r b m ) × exp { 2 * [ A c c * t c c + ( A c h m * α + A c h b ) * t c h ] } r s c l ) ] .
r = exp ( 2 * A o m * t o m ) [ r i l m + ( 1 r i l m ) exp ( 2 * A RPE * α * t RPE ) × ( r b m + ( 1 r b m ) exp ( 2 * A c c * t c c ) × { 1 r s c l * [ a b * coth ( b * S c h t c h ) ] a + b * coth ( b * S c h t c h ) r s c l } ) ] .
a = 1 + A c h m * α + A c h b S c h , b = a 2 1 .
δ T δ t = κ ρ c { δ δ r 1 r δ T δ r + δ 2 T δ z 2 } + Q ρ c  ,
Ω ( r , z ) = A t i t f exp { E R T } d t  ,
exp ( 2 * A o m * t o m ) * r i l m .
r b m * ( 1 r i l m )   exp ( 2 * A RPE * α * t RPE ) .
{ 1 r s c l * [ a b * coth ( b * S c h t c h ) ] a + b * coth ( b * S c h t c h ) r s c l } .
( 1 r b m ) exp ( 2 * A c c * t c c ) .
r = exp ( 2 * A o m * t o m ) [ r i l m + ( 1 r i l m ) exp ( 2 * A RPE * α * t RPE ) × ( r b m + ( 1 r b m ) exp ( 2 * A c c * t c c ) × * { 1 r s c l * [ a b * coth ( b * coth ( b * S c h t c h ) ] a + b * coth ( b * S c h t c h ) r s c l } ) ] .

Metrics