Abstract

Laser Doppler velocimetry was performed on retinal vessels of a cat using a linearly polarized He–Ne laser as the incident beam. The diameter of the vessels measured was <120 μm. Measurements show that if double transmission of the laser light through a given retinal vessel can be prevented, the Doppler shift power spectra have the shape theoretically expected from calculations based on a single scattering model and parabolic velocity profile of the red blood cells.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Riva, J. E. Grunwald, B. L. Petrig, “Laser Doppler Measurement of Retinal Blood Velocity: Validity of the Single Scattering Model,” Appl. Opt. 24, 605 (1985).
    [CrossRef] [PubMed]
  2. G. D. Pedersen, N. J. McCormick, L. O. Reynolds, “Transport Calculations for Light Scattering in Blood,” Biophys. J. 16, 199 (1976).
    [CrossRef]
  3. M. D. Stern, “Laser Doppler Velocimetry in Blood and Multiply Scattering Fluids: Theory,” Appl. Opt. 24, 1968 (1985).
    [CrossRef] [PubMed]
  4. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic, New York, 1978).
  5. F. C. Delori, “Noninvasive Technique for Oximetry of Blood in Retinal Vessels,” Appl. Opt. 27, 1113 (1988).
    [CrossRef] [PubMed]
  6. J. A. Coles, “Some Reflective Properties of the Tapetum Lucidum of the Cat’s Eye,” J. Physiol. 212, 393 (1971).
    [PubMed]
  7. R. W. Rodieck, The Vertebrate Retina. Principles of Structures and Function (Freeman, San Francisco, 1973), p. 257.
  8. C. E. Riva, B. L. Petrig, J. E. Grunwald, “Near Infrared Laser Doppler Velocimetry,” Lasers Ophthalmol. 1, 211 (1987).
  9. G. J. Vakkur, P. O. Bishop, “The Schematic Eye in the Cat,” Vision Res. 3, 357 (1963).
    [CrossRef]
  10. R. Bonner, R. Nossal, “Model for Laser Doppler Measurements of Blood Flow in Tissue,” Appl. Opt. 20, 2097 (1981).
    [CrossRef] [PubMed]
  11. V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982), pp. 163–167.
  12. L. J. Bour, N.UJ. Lopes Cardozo, “On the Birefringence of the Living Human Eye,” Vision Res. 21, 1413 (1981).
    [CrossRef] [PubMed]
  13. G. T. Feke, C. R. Riva, “Laser Doppler Measurements of Blood Velocity in Human Retinal Vessels,” J. Opt. Soc. Am. 68, 526 (1979).
    [CrossRef]
  14. B. L. Petrig, C. E. Riva, “Retinal Laser Doppler Velocimetry: Toward its Computer-Assisted Clinical Use,” Appl. Opt. 27, 1126 (1988).
    [CrossRef] [PubMed]
  15. F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
    [CrossRef] [PubMed]

1988

1987

C. E. Riva, B. L. Petrig, J. E. Grunwald, “Near Infrared Laser Doppler Velocimetry,” Lasers Ophthalmol. 1, 211 (1987).

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

1985

1981

L. J. Bour, N.UJ. Lopes Cardozo, “On the Birefringence of the Living Human Eye,” Vision Res. 21, 1413 (1981).
[CrossRef] [PubMed]

R. Bonner, R. Nossal, “Model for Laser Doppler Measurements of Blood Flow in Tissue,” Appl. Opt. 20, 2097 (1981).
[CrossRef] [PubMed]

1979

1976

G. D. Pedersen, N. J. McCormick, L. O. Reynolds, “Transport Calculations for Light Scattering in Blood,” Biophys. J. 16, 199 (1976).
[CrossRef]

1971

J. A. Coles, “Some Reflective Properties of the Tapetum Lucidum of the Cat’s Eye,” J. Physiol. 212, 393 (1971).
[PubMed]

1963

G. J. Vakkur, P. O. Bishop, “The Schematic Eye in the Cat,” Vision Res. 3, 357 (1963).
[CrossRef]

Bishop, P. O.

G. J. Vakkur, P. O. Bishop, “The Schematic Eye in the Cat,” Vision Res. 3, 357 (1963).
[CrossRef]

Bonner, R.

Bour, L. J.

L. J. Bour, N.UJ. Lopes Cardozo, “On the Birefringence of the Living Human Eye,” Vision Res. 21, 1413 (1981).
[CrossRef] [PubMed]

Coles, J. A.

J. A. Coles, “Some Reflective Properties of the Tapetum Lucidum of the Cat’s Eye,” J. Physiol. 212, 393 (1971).
[PubMed]

Delori, F. C.

Feke, G. T.

Grunwald, J. E.

Hiramatsu, O.

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic, New York, 1978).

Kajiya, F.

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

Lopes Cardozo, N.UJ.

L. J. Bour, N.UJ. Lopes Cardozo, “On the Birefringence of the Living Human Eye,” Vision Res. 21, 1413 (1981).
[CrossRef] [PubMed]

McCormick, N. J.

G. D. Pedersen, N. J. McCormick, L. O. Reynolds, “Transport Calculations for Light Scattering in Blood,” Biophys. J. 16, 199 (1976).
[CrossRef]

Mito, K.

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

Nossal, R.

Ogasawara, Y.

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

Pedersen, G. D.

G. D. Pedersen, N. J. McCormick, L. O. Reynolds, “Transport Calculations for Light Scattering in Blood,” Biophys. J. 16, 199 (1976).
[CrossRef]

Petrig, B. L.

Reynolds, L. O.

G. D. Pedersen, N. J. McCormick, L. O. Reynolds, “Transport Calculations for Light Scattering in Blood,” Biophys. J. 16, 199 (1976).
[CrossRef]

Riva, C. E.

Riva, C. R.

Rodieck, R. W.

R. W. Rodieck, The Vertebrate Retina. Principles of Structures and Function (Freeman, San Francisco, 1973), p. 257.

Stern, M. D.

Tsujioka, K.

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

Vakkur, G. J.

G. J. Vakkur, P. O. Bishop, “The Schematic Eye in the Cat,” Vision Res. 3, 357 (1963).
[CrossRef]

Zuev, V. E.

V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982), pp. 163–167.

Appl. Opt.

Biophys. J.

G. D. Pedersen, N. J. McCormick, L. O. Reynolds, “Transport Calculations for Light Scattering in Blood,” Biophys. J. 16, 199 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Physiol

J. A. Coles, “Some Reflective Properties of the Tapetum Lucidum of the Cat’s Eye,” J. Physiol. 212, 393 (1971).
[PubMed]

Lasers Ophthalmol.

C. E. Riva, B. L. Petrig, J. E. Grunwald, “Near Infrared Laser Doppler Velocimetry,” Lasers Ophthalmol. 1, 211 (1987).

Med. Prog. Technol.

F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, “An Optical-Fiber Laser Doppler Velocimeter and its Application to Measurements of Coronary Blood Flow Velocities,” Med. Prog. Technol. 12, 77 (1987).
[CrossRef] [PubMed]

Vision Res.

L. J. Bour, N.UJ. Lopes Cardozo, “On the Birefringence of the Living Human Eye,” Vision Res. 21, 1413 (1981).
[CrossRef] [PubMed]

G. J. Vakkur, P. O. Bishop, “The Schematic Eye in the Cat,” Vision Res. 3, 357 (1963).
[CrossRef]

Other

V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982), pp. 163–167.

R. W. Rodieck, The Vertebrate Retina. Principles of Structures and Function (Freeman, San Francisco, 1973), p. 257.

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

He–Ne beam focused on a cat retinal vein lying (a) in front of the tapetum; (b) in the pigmented region.

Fig. 2
Fig. 2

Topcon fundus camera LDV system. The laser beam is deflected into the illumination system of the camera by a beam splitter BS. It is placed on a given vessel using rotary biprism RP and focused on this vessel with lens Li. EXP is a 4× beam expander. Two holes, h1 and h2, in aperture AP, which is conjugated to the pupil of the eye measured select two beams from the laser light scattered by the blood and vessel wall. These beams are focused at kS1 and kS2 in the retinal image plane of the camera. Optical fibers, OF1 and OF2, collect the light and guide it to photomultipliers. A linear polarizer (analyzer) was placed on top of h1. For more details, see Ref. 8.

Fig. 3
Fig. 3

DSPS obtained from a vein in tapetal region for parallel and perpendicular polarizations of the incident and detected beams. Recording time: 320 ms.

Fig. 4
Fig. 4

Top: Intensity measured at kS1 of He–Ne light from a vein in front of the tapetum as a function of the angle of polarization. 0° corresponds to the parallel polarization of the polarizer and analyzer. Bottom: Intensity of He–Ne light reflected from two areas of the tapetum as a function of the polarization angle. The dashed line is the fit according to the function a + b cos2γ (see text).

Fig. 5
Fig. 5

DSPS obtained from a vein in pigmented region for parallel and perpendicular polarizations of the incident and detected beams. Recording time: 320 ms.

Fig. 6
Fig. 6

Intensity of He–Ne light from the vein in the pigmented area vs polarization angle. Detection was at kS1. Dashed line: see Fig. 4.

Fig. 7
Fig. 7

Four typical DSPS recorded in 40 ms from a retinal vein in front of the pigment. Arrows show cutoff frequencies determined visually.

Fig. 8
Fig. 8

Average of 32 (1.3-s) and 256 (10.2-s) DSPS shown in Fig. 7. Shaded area: range of cutoff frequencies of DSPS recorded in 40 ms. Inset: low-pass filtered time course of the cutoff frequency determined by computer analysis of the Doppler signal14 demonstrating the pulsatility of the velocity in phase with the cardiac cycle. The cutoffs range from ~12 to 15 kHz, which is slightly higher than the visually determined cutoffs. The difference was found to result from a systematic difference in the choice of the cutoff frequency between the computer and human observer.

Metrics