Abstract

Time-harmonic and time-dependent Green’s functions are derived for a lossless, uniaxial gyroelectromagnetic medium whose permeability tensor is a scalar multiple of its permittivity tensor, and their properties are investigated. The derived Green’s functions can be used for the solution of initial and boundary value problems, as well as for obtaining the electromagnetic fields radiated by electric and magnetic sources.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral-domain dyadic Green’s function in layered chiral media

Sami M. Ali, Tarek M. Habashy, and Jin Au Kong
J. Opt. Soc. Am. A 9(3) 413-423 (1992)

Radiation of electromagnetic fields in uniaxially anisotropic media*

Jakob J. Stamnes and George C. Sherman
J. Opt. Soc. Am. 66(8) 780-788 (1976)

Dyadic Green's function of a sphere with an eccentric spherical inclusion

Angela P. Moneda and Dimitrios P. Chrissoulidis
J. Opt. Soc. Am. A 24(6) 1695-1703 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription