Abstract

Climatologies of aerosol backscatter profiles, derived from airborne and ground-based CO2 lidar returns, indicate a high frequency of occurrence for a narrow range of low backscatter values within the troposphere—a background mode.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements with an Airborne CO2 CW laser,” Int. J. Aviation Safety 2, 207 (1983).
  2. J. M. Vaughan, “Atmospheric Backscatter at 10.6 μm; a Compendium of Measurements Made Outside the United Kingdom by the Airborne LATAS Coherent Laser Radar Velocimeter,” RSRE Report 87002 (1987).
  3. J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
    [CrossRef]
  4. J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.
  5. J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 2, Algorithm Performance,” J. Geophys. Res. Atmos. (1989), in press.
  6. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
    [CrossRef] [PubMed]
  7. M. J. Post, W. D. Neff, “Doppler Lidar Measurement of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274 (1986).
    [CrossRef]
  8. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. 1: Aerosol Properties, Modeling Techniques, and Associated Problems,” Appl. Opt. 22, 1655 (1983).
    [CrossRef] [PubMed]

1988 (1)

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

1986 (1)

M. J. Post, W. D. Neff, “Doppler Lidar Measurement of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274 (1986).
[CrossRef]

1983 (2)

1982 (1)

Bowdle, D. A.

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 2, Algorithm Performance,” J. Geophys. Res. Atmos. (1989), in press.

Brown, D. W.

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.

Davies, P. H.

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

Deepak, A.

Farrukh, U. O.

Hall, F. F.

Kent, G. S.

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. 1: Aerosol Properties, Modeling Techniques, and Associated Problems,” Appl. Opt. 22, 1655 (1983).
[CrossRef] [PubMed]

Lawrence, T. R.

McCormick, M. P.

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

Nash, C.

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

Neff, W. D.

M. J. Post, W. D. Neff, “Doppler Lidar Measurement of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274 (1986).
[CrossRef]

Post, M. J.

M. J. Post, W. D. Neff, “Doppler Lidar Measurement of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274 (1986).
[CrossRef]

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

Richter, R. A.

Rothermel, J.

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 2, Algorithm Performance,” J. Geophys. Res. Atmos. (1989), in press.

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.

Vaughan, J. M.

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements with an Airborne CO2 CW laser,” Int. J. Aviation Safety 2, 207 (1983).

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 2, Algorithm Performance,” J. Geophys. Res. Atmos. (1989), in press.

J. M. Vaughan, “Atmospheric Backscatter at 10.6 μm; a Compendium of Measurements Made Outside the United Kingdom by the Airborne LATAS Coherent Laser Radar Velocimeter,” RSRE Report 87002 (1987).

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.

Woodfield, A. A.

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements with an Airborne CO2 CW laser,” Int. J. Aviation Safety 2, 207 (1983).

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.

Yue, G. K.

Appl. Opt. (2)

Bull. Am. Meteorol. Soc. (1)

M. J. Post, W. D. Neff, “Doppler Lidar Measurement of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274 (1986).
[CrossRef]

Int. J. Aviation Safety (1)

A. A. Woodfield, J. M. Vaughan, “Airspeed and Wind Shear Measurements with an Airborne CO2 CW laser,” Int. J. Aviation Safety 2, 207 (1983).

Nature London (1)

J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. S. Kent, M. P. McCormick, “Comparison of SAGE II Solar Extinction Data with Airborne Measurements of Atmospheric Backscattering in the Troposphere and Lower Stratosphere,” Nature London 332, 709 (1988).
[CrossRef]

Other (3)

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 1, Algorithm Description,” J. Geophys. Res. Atmos. (1989), in press.

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of Aerosol Backscatter from Airborne CW Focused CO2 Doppler Lidar Measurements, 2, Algorithm Performance,” J. Geophys. Res. Atmos. (1989), in press.

J. M. Vaughan, “Atmospheric Backscatter at 10.6 μm; a Compendium of Measurements Made Outside the United Kingdom by the Airborne LATAS Coherent Laser Radar Velocimeter,” RSRE Report 87002 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Summary of aerosol backscatter mixing ratio (β/ρ) measurements and probability of saturated signal (shown to right of mixing ratio histogram data) made over the United Kingdom during June 1981–Oct. 1983. Height intervals are 0.5 km; data have been cast in the form of percentage probability (over complete ensemble at a given height interval) of (logarithmically averaged) β/ρ occurring within a particular bin of class size Δ log10(β/ρ) = 0.5. Probability of saturation (usually in cloud) is shown to the right of the mixing ratio histogram. Not all flights climbed to full altitude; in particular, single height bin above 13.25 km showing 100% occupancy is based on only a few records. Statistics are based on 40 profiles, (b) Summary of aerosol β/ρ measurements made over Colorado during May 1981–Aug. 1984. Height intervals are 1 km; data have been cast in the form of percentage probability of (linearly averaged) β/ρ occurring within a particular bin of class size Δ log10(β/ρ) = 0.33. Seasonal subsets of data show very similar features. Statistics are based on 255 profiles, (c) Schematic drawing of scattering branches of β/ρ, derived from (a) and (b) and discussed in the text. Indicated separation of the stratospheric branch is supported by detailed examination of data and, particularly, seasonal subsets of (b).

Metrics