Abstract

Multiple pulse laser-induced bulk damage has been studied in fused silica and borosilicate glass. The fluence dependence and pulse repetition frequency dependence of the damage make it clear that laser irradiation promotes damage on subsequent pulses, and the evidence favors attribution of the effect to transient entities such as point defects rather than larger imperfections such as inclusions. However, the influence of preirradiation defects on damage thresholds is small, and a luminescence experiment places low limits on the possible concentration of conduction band electrons prior to damage. The constraints these results place on possible mechanisms of multiple damage are briefly discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, H. H. Barrett, “The Probability and Dynamics of Damaging Optical Materials with Lasers,” Natl. Bur. Stand. U.S. Spec. Publ. 356 (1971), pp. 76–90.
  2. S. N. Zhurkov, S. B. Eronko, A. Chmel, “Thermal Fluctuation Origin of the Optical Strength of Transparent Insulators,” Sov. Phys. Solid State 24, 414 (1982).
  3. A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
    [CrossRef]
  4. L. D. Merkle, M. Bass, R. T. Swimm, “Multiple Pulse Laser-Induced Bulk Damage in Crystalline and Fused Quartz at 1.064 and 0.532 μm,” Opt. Eng. 22, 405 (1983);Opt. Eng. 25, 196 (1986).
    [CrossRef]
  5. L. D. Merkle, N. Koumvakalis, M. Bass, “Laser-Induced Bulk Damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772 (1984);J. Appl. Phys. 59, 2597 (1986).
    [CrossRef]
  6. R. M. O’Connell, T. F. Deaton, T. T. Saito, “Single- and Multiple-Shot Laser-Damaged Properties of Commercial Grade PMMA,” Appl. Opt. 23, 682 (1984).
    [CrossRef]
  7. L. B. Glebov, O. M. Efimov, G. T. Petrovskii, “Absence of Below-Threshold Ionization and the Cumulation Effect Under Conditions of Repeated Exposure of Glasses to Laser Radiation,” Sov. J. Quantum Electron. 16, 1245 (1986).
    [CrossRef]
  8. S. P. Fry, J-D. Shin, R. M. Walser, M. J. Becker, “New Data Regarding the Thermal Laser Damage Model and the Accumulation Phenomenon in Silicon,” presented at Nineteenth Annual Symposium on Optical Materials for High Power Lasers (Oct.1987), to be published by Natl. Bur. Stand. U.S.
  9. S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
    [CrossRef]
  10. R. M. Wood, S. K. Sharma, P. Waite, “Variation of Laser Induced Damage Threshold with Laser Pulse Repetition Frequency,” Natl. Bur. Stand. U.S. Spec. Publ. 669 (1985), pp. 44–48.
  11. A. Chmel, S. B. Eronko, “Laser-Induced Generation of Structural Defects in Vitreous Silica and in Activated Silicate Glass,” J.Non-Cryst. Solids 70, 45 (1985).
    [CrossRef]
  12. G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).
  13. P. K. Bandyopadhyay, L. D. Merkle, “Laser-Induced Damage in Quartz: a Study of the Influence of Impurities and Defects,” J. Appl. Phys. 63, 1392 (1988).
    [CrossRef]
  14. A. Schmid, P. Kelly, P. Braunlich, “Optical Breakdown in Alkali Halides,” Phys. Rev. B 16, 4569 (1977).
    [CrossRef]
  15. M. Sparks et al., “Theory of Electron-Avalanche Breakdown in Solids,” Phys. Rev. B 24, 3519 (1981).
    [CrossRef]
  16. L. G. DeShazer, B. E. Newnam, K. M. Leung, “The Role of Coating Defects in Laser-Induced Damage to Thin Films,” Natl. Bur. Stand. U.S. Spec. Publ. 387 (1973), pp. 114–123.
  17. E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
    [CrossRef]
  18. M. J. Soileau, “Frequency and Focal Volume Dependence of Laser-Induced Breakdown in Wide Band Gap Insulators,” Ph.D. Dissertation, U. Southern California, Los Angeles (1979).
  19. A. Feldman, D. Horowitz, R. M. Waxler, “Mechanisms for Self-Focusing in Optical Glasses,” IEEE J. Quantum Electron. QE-9, 1054 (1973).
    [CrossRef]
  20. W. T. White, M. A. Henesian, M. J. Weber, “Photothermal-Lensing Measurements of Two-Photon Absorption and Two-Photon-Induced Color Centers in Borosilicate Glasses at 532 nm,” J. Opt. Soc. Am. B 2, 1402 (1985).
    [CrossRef]
  21. D. L. Griscom, “Defect Structure of Glasses,” J. Non-Cryst. Solids 73, 51 (1985).
    [CrossRef]
  22. J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a-SiO2,” Philos. Mag. B 49, 357 (1984).
    [CrossRef]
  23. J. H. Stathis, M. A. Kastner, “Photoinduced Paramagnetic Defects in Amorphous Silicon Dioxide,” Phys. Rev. B 29, 7079 (1984).
    [CrossRef]
  24. M. J. Soileau, N. Mansour, E. Canto, D. L. Griscom, “Effects of Radiation Induced Defects on Laser-Induced Breakdown in SiO2,” presented at Seventeenth Annual Symposium on Optical Materials for High Power Lasers, (Oct.1985), to be published by Natl. Bur. Stand. U.S.
  25. G. H. Sigel, “Ultraviolet Spectra of Silicate Glasses: a Review of Some Experimental Evidence,” J. Non-Cryst. Solids 13, 372 (1973/74).
    [CrossRef]
  26. K. Tanimura, T. Tanaka, N. Itoh, “Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2,” Phys. Rev. Lett. 51, 423 (1983).
    [CrossRef]
  27. L. D. Merkle, D. Kitriotis, “Temperature Dependence of Laser-Induced Bulk Damage in SiO2 and Borosilicate Glass,” Phys. Rev. B. 38, 1473 (1988).
    [CrossRef]
  28. S.-T. Wu, M. Bass, J. P. Stone, “Reversible and Irreversible Changes in NaCl and KCl Absorption During Multiple Pulse 10.6 μm Irradiation,” Natl. Bur. Stand. U.S. Spec. Publ. 638 (1983), pp. 152–159.
  29. Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap Generation and Occupation Dynamics in SiO2 Under Charge Injection Stress,” J. Appl. Phys. 60, 2024 (1986).
    [CrossRef]
  30. J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
    [CrossRef]

1988 (2)

P. K. Bandyopadhyay, L. D. Merkle, “Laser-Induced Damage in Quartz: a Study of the Influence of Impurities and Defects,” J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

L. D. Merkle, D. Kitriotis, “Temperature Dependence of Laser-Induced Bulk Damage in SiO2 and Borosilicate Glass,” Phys. Rev. B. 38, 1473 (1988).
[CrossRef]

1986 (2)

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, “Absence of Below-Threshold Ionization and the Cumulation Effect Under Conditions of Repeated Exposure of Glasses to Laser Radiation,” Sov. J. Quantum Electron. 16, 1245 (1986).
[CrossRef]

Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap Generation and Occupation Dynamics in SiO2 Under Charge Injection Stress,” J. Appl. Phys. 60, 2024 (1986).
[CrossRef]

1985 (5)

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

W. T. White, M. A. Henesian, M. J. Weber, “Photothermal-Lensing Measurements of Two-Photon Absorption and Two-Photon-Induced Color Centers in Borosilicate Glasses at 532 nm,” J. Opt. Soc. Am. B 2, 1402 (1985).
[CrossRef]

R. M. Wood, S. K. Sharma, P. Waite, “Variation of Laser Induced Damage Threshold with Laser Pulse Repetition Frequency,” Natl. Bur. Stand. U.S. Spec. Publ. 669 (1985), pp. 44–48.

A. Chmel, S. B. Eronko, “Laser-Induced Generation of Structural Defects in Vitreous Silica and in Activated Silicate Glass,” J.Non-Cryst. Solids 70, 45 (1985).
[CrossRef]

D. L. Griscom, “Defect Structure of Glasses,” J. Non-Cryst. Solids 73, 51 (1985).
[CrossRef]

1984 (4)

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a-SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

J. H. Stathis, M. A. Kastner, “Photoinduced Paramagnetic Defects in Amorphous Silicon Dioxide,” Phys. Rev. B 29, 7079 (1984).
[CrossRef]

R. M. O’Connell, T. F. Deaton, T. T. Saito, “Single- and Multiple-Shot Laser-Damaged Properties of Commercial Grade PMMA,” Appl. Opt. 23, 682 (1984).
[CrossRef]

L. D. Merkle, N. Koumvakalis, M. Bass, “Laser-Induced Bulk Damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772 (1984);J. Appl. Phys. 59, 2597 (1986).
[CrossRef]

1983 (4)

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

L. D. Merkle, M. Bass, R. T. Swimm, “Multiple Pulse Laser-Induced Bulk Damage in Crystalline and Fused Quartz at 1.064 and 0.532 μm,” Opt. Eng. 22, 405 (1983);Opt. Eng. 25, 196 (1986).
[CrossRef]

K. Tanimura, T. Tanaka, N. Itoh, “Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2,” Phys. Rev. Lett. 51, 423 (1983).
[CrossRef]

S.-T. Wu, M. Bass, J. P. Stone, “Reversible and Irreversible Changes in NaCl and KCl Absorption During Multiple Pulse 10.6 μm Irradiation,” Natl. Bur. Stand. U.S. Spec. Publ. 638 (1983), pp. 152–159.

1982 (1)

S. N. Zhurkov, S. B. Eronko, A. Chmel, “Thermal Fluctuation Origin of the Optical Strength of Transparent Insulators,” Sov. Phys. Solid State 24, 414 (1982).

1981 (3)

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
[CrossRef]

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

M. Sparks et al., “Theory of Electron-Avalanche Breakdown in Solids,” Phys. Rev. B 24, 3519 (1981).
[CrossRef]

1980 (1)

G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).

1977 (1)

A. Schmid, P. Kelly, P. Braunlich, “Optical Breakdown in Alkali Halides,” Phys. Rev. B 16, 4569 (1977).
[CrossRef]

1973 (2)

L. G. DeShazer, B. E. Newnam, K. M. Leung, “The Role of Coating Defects in Laser-Induced Damage to Thin Films,” Natl. Bur. Stand. U.S. Spec. Publ. 387 (1973), pp. 114–123.

A. Feldman, D. Horowitz, R. M. Waxler, “Mechanisms for Self-Focusing in Optical Glasses,” IEEE J. Quantum Electron. QE-9, 1054 (1973).
[CrossRef]

1971 (1)

M. Bass, H. H. Barrett, “The Probability and Dynamics of Damaging Optical Materials with Lasers,” Natl. Bur. Stand. U.S. Spec. Publ. 356 (1971), pp. 76–90.

Balitskas, S. K.

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

Bandyopadhyay, P. K.

P. K. Bandyopadhyay, L. D. Merkle, “Laser-Induced Damage in Quartz: a Study of the Influence of Impurities and Defects,” J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, “The Probability and Dynamics of Damaging Optical Materials with Lasers,” Natl. Bur. Stand. U.S. Spec. Publ. 356 (1971), pp. 76–90.

Bass, M.

L. D. Merkle, N. Koumvakalis, M. Bass, “Laser-Induced Bulk Damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772 (1984);J. Appl. Phys. 59, 2597 (1986).
[CrossRef]

S.-T. Wu, M. Bass, J. P. Stone, “Reversible and Irreversible Changes in NaCl and KCl Absorption During Multiple Pulse 10.6 μm Irradiation,” Natl. Bur. Stand. U.S. Spec. Publ. 638 (1983), pp. 152–159.

L. D. Merkle, M. Bass, R. T. Swimm, “Multiple Pulse Laser-Induced Bulk Damage in Crystalline and Fused Quartz at 1.064 and 0.532 μm,” Opt. Eng. 22, 405 (1983);Opt. Eng. 25, 196 (1986).
[CrossRef]

M. Bass, H. H. Barrett, “The Probability and Dynamics of Damaging Optical Materials with Lasers,” Natl. Bur. Stand. U.S. Spec. Publ. 356 (1971), pp. 76–90.

Becker, M. J.

S. P. Fry, J-D. Shin, R. M. Walser, M. J. Becker, “New Data Regarding the Thermal Laser Damage Model and the Accumulation Phenomenon in Silicon,” presented at Nineteenth Annual Symposium on Optical Materials for High Power Lasers (Oct.1987), to be published by Natl. Bur. Stand. U.S.

Braunlich, P.

A. Schmid, P. Kelly, P. Braunlich, “Optical Breakdown in Alkali Halides,” Phys. Rev. B 16, 4569 (1977).
[CrossRef]

Canto, E.

M. J. Soileau, N. Mansour, E. Canto, D. L. Griscom, “Effects of Radiation Induced Defects on Laser-Induced Breakdown in SiO2,” presented at Seventeenth Annual Symposium on Optical Materials for High Power Lasers, (Oct.1985), to be published by Natl. Bur. Stand. U.S.

Chmel, A.

A. Chmel, S. B. Eronko, “Laser-Induced Generation of Structural Defects in Vitreous Silica and in Activated Silicate Glass,” J.Non-Cryst. Solids 70, 45 (1985).
[CrossRef]

S. N. Zhurkov, S. B. Eronko, A. Chmel, “Thermal Fluctuation Origin of the Optical Strength of Transparent Insulators,” Sov. Phys. Solid State 24, 414 (1982).

Deaton, T. F.

DeShazer, L. G.

L. G. DeShazer, B. E. Newnam, K. M. Leung, “The Role of Coating Defects in Laser-Induced Damage to Thin Films,” Natl. Bur. Stand. U.S. Spec. Publ. 387 (1973), pp. 114–123.

Durand, J. P.

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

Efimov, O. M.

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, “Absence of Below-Threshold Ionization and the Cumulation Effect Under Conditions of Repeated Exposure of Glasses to Laser Radiation,” Sov. J. Quantum Electron. 16, 1245 (1986).
[CrossRef]

Epifanov, A. S.

G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).

Eronko, S. B.

A. Chmel, S. B. Eronko, “Laser-Induced Generation of Structural Defects in Vitreous Silica and in Activated Silicate Glass,” J.Non-Cryst. Solids 70, 45 (1985).
[CrossRef]

S. N. Zhurkov, S. B. Eronko, A. Chmel, “Thermal Fluctuation Origin of the Optical Strength of Transparent Insulators,” Sov. Phys. Solid State 24, 414 (1982).

Feldman, A.

A. Feldman, D. Horowitz, R. M. Waxler, “Mechanisms for Self-Focusing in Optical Glasses,” IEEE J. Quantum Electron. QE-9, 1054 (1973).
[CrossRef]

Frohman-Bentchkowsky, D.

Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap Generation and Occupation Dynamics in SiO2 Under Charge Injection Stress,” J. Appl. Phys. 60, 2024 (1986).
[CrossRef]

Fry, S. P.

S. P. Fry, J-D. Shin, R. M. Walser, M. J. Becker, “New Data Regarding the Thermal Laser Damage Model and the Accumulation Phenomenon in Silicon,” presented at Nineteenth Annual Symposium on Optical Materials for High Power Lasers (Oct.1987), to be published by Natl. Bur. Stand. U.S.

Glebov, L. B.

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, “Absence of Below-Threshold Ionization and the Cumulation Effect Under Conditions of Repeated Exposure of Glasses to Laser Radiation,” Sov. J. Quantum Electron. 16, 1245 (1986).
[CrossRef]

Gomelauri, G. V.

G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).

Griscom, D. L.

D. L. Griscom, “Defect Structure of Glasses,” J. Non-Cryst. Solids 73, 51 (1985).
[CrossRef]

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

M. J. Soileau, N. Mansour, E. Canto, D. L. Griscom, “Effects of Radiation Induced Defects on Laser-Induced Breakdown in SiO2,” presented at Seventeenth Annual Symposium on Optical Materials for High Power Lasers, (Oct.1985), to be published by Natl. Bur. Stand. U.S.

Henesian, M. A.

Horowitz, D.

A. Feldman, D. Horowitz, R. M. Waxler, “Mechanisms for Self-Focusing in Optical Glasses,” IEEE J. Quantum Electron. QE-9, 1054 (1973).
[CrossRef]

Itoh, N.

K. Tanimura, T. Tanaka, N. Itoh, “Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2,” Phys. Rev. Lett. 51, 423 (1983).
[CrossRef]

Kastner, M. A.

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a-SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

J. H. Stathis, M. A. Kastner, “Photoinduced Paramagnetic Defects in Amorphous Silicon Dioxide,” Phys. Rev. B 29, 7079 (1984).
[CrossRef]

Kelly, P.

A. Schmid, P. Kelly, P. Braunlich, “Optical Breakdown in Alkali Halides,” Phys. Rev. B 16, 4569 (1977).
[CrossRef]

Kitriotis, D.

L. D. Merkle, D. Kitriotis, “Temperature Dependence of Laser-Induced Bulk Damage in SiO2 and Borosilicate Glass,” Phys. Rev. B. 38, 1473 (1988).
[CrossRef]

Koumvakalis, N.

L. D. Merkle, N. Koumvakalis, M. Bass, “Laser-Induced Bulk Damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772 (1984);J. Appl. Phys. 59, 2597 (1986).
[CrossRef]

Le Gressus, C.

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

Le Moel, A.

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

Leung, K. M.

L. G. DeShazer, B. E. Newnam, K. M. Leung, “The Role of Coating Defects in Laser-Induced Damage to Thin Films,” Natl. Bur. Stand. U.S. Spec. Publ. 387 (1973), pp. 114–123.

Maldutis, E. K.

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

Manenkov, A. A.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).

Mansour, N.

M. J. Soileau, N. Mansour, E. Canto, D. L. Griscom, “Effects of Radiation Induced Defects on Laser-Induced Breakdown in SiO2,” presented at Seventeenth Annual Symposium on Optical Materials for High Power Lasers, (Oct.1985), to be published by Natl. Bur. Stand. U.S.

Matyushin, G. A.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Merkle, L. D.

L. D. Merkle, D. Kitriotis, “Temperature Dependence of Laser-Induced Bulk Damage in SiO2 and Borosilicate Glass,” Phys. Rev. B. 38, 1473 (1988).
[CrossRef]

P. K. Bandyopadhyay, L. D. Merkle, “Laser-Induced Damage in Quartz: a Study of the Influence of Impurities and Defects,” J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

L. D. Merkle, N. Koumvakalis, M. Bass, “Laser-Induced Bulk Damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772 (1984);J. Appl. Phys. 59, 2597 (1986).
[CrossRef]

L. D. Merkle, M. Bass, R. T. Swimm, “Multiple Pulse Laser-Induced Bulk Damage in Crystalline and Fused Quartz at 1.064 and 0.532 μm,” Opt. Eng. 22, 405 (1983);Opt. Eng. 25, 196 (1986).
[CrossRef]

Nechitailo, V. S.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Newnam, B. E.

L. G. DeShazer, B. E. Newnam, K. M. Leung, “The Role of Coating Defects in Laser-Induced Damage to Thin Films,” Natl. Bur. Stand. U.S. Spec. Publ. 387 (1973), pp. 114–123.

Nissan-Cohen, Y.

Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap Generation and Occupation Dynamics in SiO2 Under Charge Injection Stress,” J. Appl. Phys. 60, 2024 (1986).
[CrossRef]

O’Connell, R. M.

Petrovskii, G. T.

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, “Absence of Below-Threshold Ionization and the Cumulation Effect Under Conditions of Repeated Exposure of Glasses to Laser Radiation,” Sov. J. Quantum Electron. 16, 1245 (1986).
[CrossRef]

Prokhorov, A. M.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).

Saito, T. T.

Schmid, A.

A. Schmid, P. Kelly, P. Braunlich, “Optical Breakdown in Alkali Halides,” Phys. Rev. B 16, 4569 (1977).
[CrossRef]

Shappir, J.

Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap Generation and Occupation Dynamics in SiO2 Under Charge Injection Stress,” J. Appl. Phys. 60, 2024 (1986).
[CrossRef]

Sharma, S. K.

R. M. Wood, S. K. Sharma, P. Waite, “Variation of Laser Induced Damage Threshold with Laser Pulse Repetition Frequency,” Natl. Bur. Stand. U.S. Spec. Publ. 669 (1985), pp. 44–48.

Shin, J-D.

S. P. Fry, J-D. Shin, R. M. Walser, M. J. Becker, “New Data Regarding the Thermal Laser Damage Model and the Accumulation Phenomenon in Silicon,” presented at Nineteenth Annual Symposium on Optical Materials for High Power Lasers (Oct.1987), to be published by Natl. Bur. Stand. U.S.

Sigel, G. H.

G. H. Sigel, “Ultraviolet Spectra of Silicate Glasses: a Review of Some Experimental Evidence,” J. Non-Cryst. Solids 13, 372 (1973/74).
[CrossRef]

Smirl, A. L.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
[CrossRef]

Soileau, M. J.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
[CrossRef]

M. J. Soileau, N. Mansour, E. Canto, D. L. Griscom, “Effects of Radiation Induced Defects on Laser-Induced Breakdown in SiO2,” presented at Seventeenth Annual Symposium on Optical Materials for High Power Lasers, (Oct.1985), to be published by Natl. Bur. Stand. U.S.

M. J. Soileau, “Frequency and Focal Volume Dependence of Laser-Induced Breakdown in Wide Band Gap Insulators,” Ph.D. Dissertation, U. Southern California, Los Angeles (1979).

Sparks, M.

M. Sparks et al., “Theory of Electron-Avalanche Breakdown in Solids,” Phys. Rev. B 24, 3519 (1981).
[CrossRef]

Stathis, J. H.

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a-SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

J. H. Stathis, M. A. Kastner, “Photoinduced Paramagnetic Defects in Amorphous Silicon Dioxide,” Phys. Rev. B 29, 7079 (1984).
[CrossRef]

Stone, J. P.

S.-T. Wu, M. Bass, J. P. Stone, “Reversible and Irreversible Changes in NaCl and KCl Absorption During Multiple Pulse 10.6 μm Irradiation,” Natl. Bur. Stand. U.S. Spec. Publ. 638 (1983), pp. 152–159.

Swimm, R. T.

L. D. Merkle, M. Bass, R. T. Swimm, “Multiple Pulse Laser-Induced Bulk Damage in Crystalline and Fused Quartz at 1.064 and 0.532 μm,” Opt. Eng. 22, 405 (1983);Opt. Eng. 25, 196 (1986).
[CrossRef]

Tanaka, T.

K. Tanimura, T. Tanaka, N. Itoh, “Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2,” Phys. Rev. Lett. 51, 423 (1983).
[CrossRef]

Tanimura, K.

K. Tanimura, T. Tanaka, N. Itoh, “Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2,” Phys. Rev. Lett. 51, 423 (1983).
[CrossRef]

Tsaprilov, A. S.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Van Stryland, E. W.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
[CrossRef]

Vigouroux, J. P.

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

Waite, P.

R. M. Wood, S. K. Sharma, P. Waite, “Variation of Laser Induced Damage Threshold with Laser Pulse Repetition Frequency,” Natl. Bur. Stand. U.S. Spec. Publ. 669 (1985), pp. 44–48.

Walser, R. M.

S. P. Fry, J-D. Shin, R. M. Walser, M. J. Becker, “New Data Regarding the Thermal Laser Damage Model and the Accumulation Phenomenon in Silicon,” presented at Nineteenth Annual Symposium on Optical Materials for High Power Lasers (Oct.1987), to be published by Natl. Bur. Stand. U.S.

Waxler, R. M.

A. Feldman, D. Horowitz, R. M. Waxler, “Mechanisms for Self-Focusing in Optical Glasses,” IEEE J. Quantum Electron. QE-9, 1054 (1973).
[CrossRef]

Weber, M. J.

White, W. T.

Williams, W. E.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
[CrossRef]

Wood, R. M.

R. M. Wood, S. K. Sharma, P. Waite, “Variation of Laser Induced Damage Threshold with Laser Pulse Repetition Frequency,” Natl. Bur. Stand. U.S. Spec. Publ. 669 (1985), pp. 44–48.

Wu, S.-T.

S.-T. Wu, M. Bass, J. P. Stone, “Reversible and Irreversible Changes in NaCl and KCl Absorption During Multiple Pulse 10.6 μm Irradiation,” Natl. Bur. Stand. U.S. Spec. Publ. 638 (1983), pp. 152–159.

Zhurkov, S. N.

S. N. Zhurkov, S. B. Eronko, A. Chmel, “Thermal Fluctuation Origin of the Optical Strength of Transparent Insulators,” Sov. Phys. Solid State 24, 414 (1982).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. Feldman, D. Horowitz, R. M. Waxler, “Mechanisms for Self-Focusing in Optical Glasses,” IEEE J. Quantum Electron. QE-9, 1054 (1973).
[CrossRef]

J. Appl. Phys. (4)

P. K. Bandyopadhyay, L. D. Merkle, “Laser-Induced Damage in Quartz: a Study of the Influence of Impurities and Defects,” J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

L. D. Merkle, N. Koumvakalis, M. Bass, “Laser-Induced Bulk Damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772 (1984);J. Appl. Phys. 59, 2597 (1986).
[CrossRef]

Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap Generation and Occupation Dynamics in SiO2 Under Charge Injection Stress,” J. Appl. Phys. 60, 2024 (1986).
[CrossRef]

J. P. Vigouroux, J. P. Durand, A. Le Moel, C. Le Gressus, D. L. Griscom, “Electron Trapping in Amorphous SiO2 Studied by Charge Buildup Under Electron Bombardment,” J. Appl. Phys. 57, 5139 (1985).
[CrossRef]

J. Non-Cryst. Solids (2)

D. L. Griscom, “Defect Structure of Glasses,” J. Non-Cryst. Solids 73, 51 (1985).
[CrossRef]

G. H. Sigel, “Ultraviolet Spectra of Silicate Glasses: a Review of Some Experimental Evidence,” J. Non-Cryst. Solids 13, 372 (1973/74).
[CrossRef]

J. Opt. Soc. Am. B (1)

J.Non-Cryst. Solids (1)

A. Chmel, S. B. Eronko, “Laser-Induced Generation of Structural Defects in Vitreous Silica and in Activated Silicate Glass,” J.Non-Cryst. Solids 70, 45 (1985).
[CrossRef]

Natl. Bur. Stand. U.S. Spec. Publ. (4)

R. M. Wood, S. K. Sharma, P. Waite, “Variation of Laser Induced Damage Threshold with Laser Pulse Repetition Frequency,” Natl. Bur. Stand. U.S. Spec. Publ. 669 (1985), pp. 44–48.

L. G. DeShazer, B. E. Newnam, K. M. Leung, “The Role of Coating Defects in Laser-Induced Damage to Thin Films,” Natl. Bur. Stand. U.S. Spec. Publ. 387 (1973), pp. 114–123.

M. Bass, H. H. Barrett, “The Probability and Dynamics of Damaging Optical Materials with Lasers,” Natl. Bur. Stand. U.S. Spec. Publ. 356 (1971), pp. 76–90.

S.-T. Wu, M. Bass, J. P. Stone, “Reversible and Irreversible Changes in NaCl and KCl Absorption During Multiple Pulse 10.6 μm Irradiation,” Natl. Bur. Stand. U.S. Spec. Publ. 638 (1983), pp. 152–159.

Opt. Eng. (1)

L. D. Merkle, M. Bass, R. T. Swimm, “Multiple Pulse Laser-Induced Bulk Damage in Crystalline and Fused Quartz at 1.064 and 0.532 μm,” Opt. Eng. 22, 405 (1983);Opt. Eng. 25, 196 (1986).
[CrossRef]

Philos. Mag. B (1)

J. H. Stathis, M. A. Kastner, “Vacuum-Ultraviolet Generation of Luminescence and Absorption Centres in a-SiO2,” Philos. Mag. B 49, 357 (1984).
[CrossRef]

Phys. Rev. B (4)

J. H. Stathis, M. A. Kastner, “Photoinduced Paramagnetic Defects in Amorphous Silicon Dioxide,” Phys. Rev. B 29, 7079 (1984).
[CrossRef]

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-Width and Focal-Volume Dependence of Laser-Induced Breakdown,” Phys. Rev. B 23, 2144 (1981).
[CrossRef]

A. Schmid, P. Kelly, P. Braunlich, “Optical Breakdown in Alkali Halides,” Phys. Rev. B 16, 4569 (1977).
[CrossRef]

M. Sparks et al., “Theory of Electron-Avalanche Breakdown in Solids,” Phys. Rev. B 24, 3519 (1981).
[CrossRef]

Phys. Rev. B. (1)

L. D. Merkle, D. Kitriotis, “Temperature Dependence of Laser-Induced Bulk Damage in SiO2 and Borosilicate Glass,” Phys. Rev. B. 38, 1473 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tanimura, T. Tanaka, N. Itoh, “Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2,” Phys. Rev. Lett. 51, 423 (1983).
[CrossRef]

Sov. J. Quantum Electron. (3)

S. K. Balitskas, E. K. Maldutis, “Bulk Damage to Optical Glasses by Repeated Laser Irradiation,” Sov. J. Quantum Electron. 11, 541 (1981).
[CrossRef]

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, “Absence of Below-Threshold Ionization and the Cumulation Effect Under Conditions of Repeated Exposure of Glasses to Laser Radiation,” Sov. J. Quantum Electron. 16, 1245 (1986).
[CrossRef]

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Sov. Phys. JETP (1)

G. V. Gomelauri, A. S. Epifanov, A. A. Manenkov, A. M. Prokhorov, “Statistical Features of Avalanche Ionization of Wide-Gap Insulators by Laser Radiation Under Conditions of Shortage of Initiating Electrons,” Sov. Phys. JETP 52, 1193 (1980).

Sov. Phys. Solid State (1)

S. N. Zhurkov, S. B. Eronko, A. Chmel, “Thermal Fluctuation Origin of the Optical Strength of Transparent Insulators,” Sov. Phys. Solid State 24, 414 (1982).

Other (3)

S. P. Fry, J-D. Shin, R. M. Walser, M. J. Becker, “New Data Regarding the Thermal Laser Damage Model and the Accumulation Phenomenon in Silicon,” presented at Nineteenth Annual Symposium on Optical Materials for High Power Lasers (Oct.1987), to be published by Natl. Bur. Stand. U.S.

M. J. Soileau, “Frequency and Focal Volume Dependence of Laser-Induced Breakdown in Wide Band Gap Insulators,” Ph.D. Dissertation, U. Southern California, Los Angeles (1979).

M. J. Soileau, N. Mansour, E. Canto, D. L. Griscom, “Effects of Radiation Induced Defects on Laser-Induced Breakdown in SiO2,” presented at Seventeenth Annual Symposium on Optical Materials for High Power Lasers, (Oct.1985), to be published by Natl. Bur. Stand. U.S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Laser-induced damage data for BK-7 borosilicate glass irradiated at 532 nm. For the experiments denoted by crosses the spot radius is 6.0μm, whereas for the open squares it is 8.0μm and for the filled circles it is 14.0μm. The focal spot radius is defined as the distance from the beam axis at which the fluence is down by the factor e−2. The pulse repetition frequency for all cases is 10 Hz.The single pulse damage thresholds, F1, are given in Table I.

Fig. 2
Fig. 2

Laser-induced damage data for Corning 7940 fused silica irradiated at 532 nm. The crosses represent data taken at a pulse repetition frequency of 10 Hz, whereas for the open squares it is 1 Hz and for the filled circles it is 1/3 Hz. The focal spot radius in all cases is 12.0 μm.

Fig. 3
Fig. 3

Two typical sites in Corning 7940 fused silica damaged by 532-nm irradiation.

Fig. 4
Fig. 4

Absorption spectra of x-irradiated BK-7. The times refer to the number of hours of irradiation.

Fig. 5
Fig. 5

Dependence on x irradiation of 1064-nm laser-induced damage in BK-7. The crosses correspond to data on unirradiated material, the open squares to data on material x irradiated for 11 h. The focal spot radius is 7.5 μm and the pulse repetition frequency is 10 Hz.

Fig. 6
Fig. 6

Dependence on x irradiation of 532-nm laser-induced damage in BK-7. The crosses correspond to data on unirradiated material, the open squares to material x irradiated for 3 h and the filled circles to material x irradiated for 6 h. The focal spot radius is 12.5 μm and the pulse repetition frequency is 10 Hz.

Fig. 7
Fig. 7

Laser-induced damage data for two grades of fused silica at 1064 nm. The crosses correspond to data on Corning 7940, a material with high OH content, the filled circles to data on a water-free fused silica from Corning, having only a few parts per million OH. The focal spot radius is 7.5 μm and the pulse repetition frequency is 10 Hz.

Fig. 8
Fig. 8

Laser-induced damage data for two grades of fused silica at 532 nm. The crosses correspond to experiments in which damage was observed in the indicated number of pulses in Corning 7940, the open squares to experiments in the same material which were terminated without damage. The filled circles correspond to experiments in which damage was observed in the indicated number of pulses in the Corning water-free sample. The filled triangles correspond to experiments in the same material which were terminated without damage. The focal spot radius is 5.5 μm and the pulse-repetition frequency is 10 Hz.

Fig. 9
Fig. 9

Comparison of observed probabilities for damage within a given number of pulses and predictions based on the assumption that predamage pulses do not modify the damage probability. The filled circles represent the probability of damage within the stated number of pulses calculated from the combined 532-nm damage data on BK-7 for focal spot radii of 12.5, 14.0, and 14.5 μm. The crosses and error bars represent the multiple pulse damage probabilities predicted from the single pulse damage data using Eq. (1) with M = 1.

Tables (2)

Tables Icon

Table I Summary of Damage Data on Boroslllcate Glass BK-7 and Glass Ceramica

Tables Icon

Table II Summary of Damage Data on Corning 7940 (1000-ppm OH) and Water-Free (a few ppm OH) Fused Silica; the Parameters Have the Same Meanings as in Table I

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P N ( predicted ) = 1 ( 1 P M ) N / M .

Metrics