Abstract

The design, performance, and characteristics of a compact mode-locked laser with effective cavity length from 5 to 21 m is described. The overall size of the laser is 1.7 m. Pulse-to-pulse spacing of ~35–140 ns is obtained. The laser parameters of energy, number of pulses, length of train, and stability of the cavity are described. The stability zone for the cavity is calculated using the matrix method. The pulse duration was measured to be 10 ps for the early pulses in the train using a streak camera system.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, S. L. Shapiro, “Ultrafast Phenomena in Liquids and Solids,” Sci. Am. 228, 42 (1973).
    [Crossref]
  2. S. L. Shapiro, Ed., Ultrashort Light Pulses, Vol. 18 (Springer-Verlag, New York, 1977).
  3. R. R. Alfano, N. H. Schiller, G. A. Reynolds, “Production of Picosecond Pulses by Mode Locking an Nd:Glass Laser with Dye #5,” IEEE J. Quantum Electron. QE-17, 290 (1981).
    [Crossref]
  4. J. White, “Long Optical Paths of Large Aperture,” J. Opt. Soc. Am. 32, 285 (1942).
    [Crossref]
  5. A. Yariv, Quantum Electronics (Wiley, New York, 1985).

1981 (1)

R. R. Alfano, N. H. Schiller, G. A. Reynolds, “Production of Picosecond Pulses by Mode Locking an Nd:Glass Laser with Dye #5,” IEEE J. Quantum Electron. QE-17, 290 (1981).
[Crossref]

1973 (1)

R. R. Alfano, S. L. Shapiro, “Ultrafast Phenomena in Liquids and Solids,” Sci. Am. 228, 42 (1973).
[Crossref]

1942 (1)

Alfano, R. R.

R. R. Alfano, N. H. Schiller, G. A. Reynolds, “Production of Picosecond Pulses by Mode Locking an Nd:Glass Laser with Dye #5,” IEEE J. Quantum Electron. QE-17, 290 (1981).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Ultrafast Phenomena in Liquids and Solids,” Sci. Am. 228, 42 (1973).
[Crossref]

Reynolds, G. A.

R. R. Alfano, N. H. Schiller, G. A. Reynolds, “Production of Picosecond Pulses by Mode Locking an Nd:Glass Laser with Dye #5,” IEEE J. Quantum Electron. QE-17, 290 (1981).
[Crossref]

Schiller, N. H.

R. R. Alfano, N. H. Schiller, G. A. Reynolds, “Production of Picosecond Pulses by Mode Locking an Nd:Glass Laser with Dye #5,” IEEE J. Quantum Electron. QE-17, 290 (1981).
[Crossref]

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, “Ultrafast Phenomena in Liquids and Solids,” Sci. Am. 228, 42 (1973).
[Crossref]

White, J.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1985).

IEEE J. Quantum Electron. (1)

R. R. Alfano, N. H. Schiller, G. A. Reynolds, “Production of Picosecond Pulses by Mode Locking an Nd:Glass Laser with Dye #5,” IEEE J. Quantum Electron. QE-17, 290 (1981).
[Crossref]

J. Opt. Soc. Am. (1)

Sci. Am. (1)

R. R. Alfano, S. L. Shapiro, “Ultrafast Phenomena in Liquids and Solids,” Sci. Am. 228, 42 (1973).
[Crossref]

Other (2)

S. L. Shapiro, Ed., Ultrashort Light Pulses, Vol. 18 (Springer-Verlag, New York, 1977).

A. Yariv, Quantum Electronics (Wiley, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the laser output pulse train from (a) a conventional and (b) the new design mode-locked laser.

Fig. 2
Fig. 2

Layout diagram of the variable cavity length Nd:glass mode-locked laser.

Fig. 3
Fig. 3

Oscilloscope traces of mode-locked pulses emitted from the variable cavity length laser for each selectable spacing of (a) 5.25 m, (b) 9.25 m, (c) 13.25 m, and (d) 17.25 m.

Fig. 4
Fig. 4

Stability diagram for cavity R = 1 m. The stable zone is represented by the shaded area.

Fig. 5
Fig. 5

Streak Camera trace of a 10.5-ps pulse duration for a 5.25-m cavity.

Tables (1)

Tables Icon

Table I Laser Characteristics for Multiple Passes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = ( 2 N + 2 ) L / c ,
T = ( 1 L 1 + n L 2 + L 3 0 1 ) [ ( 1 L 0 1 ) ( 1 0 2 / R 1 ) ] m ( 1 L 4 + L 0 1 ) ( 1 0 2 / R 1 1 ) ( 1 L 4 0 1 ) [ ( 1 L 0 1 ) ( 1 0 2 / R 1 ) ] m ( 1 L 1 + n L 2 + L 3 + L 0 1 ) ,
| A + D | 2 1 ,
1 3 4 / R + 4 Y + 8 Y / R + ( 6 + 8 / R 8 Y / R 4 Y 2 / Y 2 / Y R ) X 1 ,

Metrics