Abstract

Three-dimensional mapping of atmospheric atomic mercury has been performed with lidar techniques, to our knowledge, for the first time. Industrial pollution monitoring, as well as measurements of background concentrations, is reported. High-efficiency frequency doubling of narrowband pulsed dye laser radiation was employed to generate intense radiation at the mercury UV resonance line. Field measurements were supplemented with extensive laboratory investigations of absorption cross sections and interfering lines of molecular oxygen.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. O. Nriagu, Ed., The Biogeochemistry of Mercury in the Environment (Elsevier/North-Holland, Amsterdam, 1979).
  2. O. Lindqvist, H. Rodhe, “Atmospheric Mercury—a Review,” Tellus 37B, 136 (1985).
    [Crossref]
  3. Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).
  4. J. H. McCarthy, “Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits,” J. Geochem. Explor. 1, 143 (1972).
    [Crossref]
  5. E. Kromer, G. Friedrich, P. Wallner, “Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks,” J. Geochem. Explor. 15, 51 (1980).
  6. R. W. Klusman, J. D. Webster, “Meteorological Noise in Crustal Gas Emission and Relevance to Geochemical Exploration,” J. Geochem. Explor. 15, 63 (1981).
    [Crossref]
  7. J. C. Varekamp, P. R. Buceck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
    [Crossref]
  8. D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
    [Crossref] [PubMed]
  9. V. Z. Furzov, N. B. Volfson, A. G. Khvalovskiy, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Acad. Nauk SSSR 179, 208 (1968).
  10. J. C. Varekamp, P. R. Buseck, “Mercury Emissions from Mount St. Helens During September 1980,” Nature London 293, 555 (1981).
    [Crossref]
  11. F. Slemr, W. Seiler, G. Schuster, “Latitudinal Distribution of Mercury over the Atlantic Ocean,” J. Geophys. Res. 86, 1159 (1981).
    [Crossref]
  12. S. H. Williston, “Mercury in the Atmosphere,” J. Geophys. Res. 73, 7051 (1968).
    [Crossref]
  13. C. Brosset, “Total Airborne Mercury and Its Possible Origin,” Water Air Soil Pollut. 17, 37 (1982).
  14. W. F. Fitzgerald, G. A. Gill, “Subnanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis,” Anal. Chem. 51, 1714 (1979).
    [Crossref]
  15. F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
    [Crossref]
  16. J. C. Robbins, “Zeeman Spectrometer for Measurements of Atmospheric Mercury Vapour,” in Geochemical Exploration, M. J. Jones, Ed. (Institute of Mining & Metallurgy, London, 1973), p. 315.
  17. D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Berlin, 1983).
  18. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  19. M. Aldén, H. Edner, S. Svanberg, “Remote Measurement of Atmospheric Mercury Using Differential Absorption Lidar,” Opt. Lett. 7, 221 (1982).
    [Crossref] [PubMed]
  20. H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984).
    [Crossref] [PubMed]
  21. H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin, “Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring,” Appl. Opt. 25, 403 (1986).
    [Crossref] [PubMed]
  22. U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979).
    [Crossref]
  23. U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long-Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 17.
  24. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile Remote Sensing System for Atmospheric Monitoring,” Appl. Opt. 26, 4330 (1987).
    [Crossref] [PubMed]
  25. C. Granier, J. P. Jégou, G. Megie, “Resonant Lidar Detection of Ca and Ca+ in the Upper Atmosphere,” Geophys. Res. Lett. 12, 10 (1985).
    [Crossref]
  26. K. H. Fricke, U. von Zahn, “Mesopause Temperatures Derived from Probing the Hyperfine Structure of the D2 Resonance Line of Sodium by Lidar,” J. Atmos. Terr. Phys. 47, 499 (1985).
    [Crossref]
  27. A. Sunesson, “Construction of a Multipass Absorption Cell,” Lund Reports on Atomic Physics LRAP-46, Lund Institute of Technology (1986).
  28. Y. Nishimura, T. Fujimoto, “λ = 2537 Å Line from a Low-Pressure Mercury Discharge Lamp. Emission Profile and Line Absorption by a Gas Containing a Mercury Vapor,” Appl. Phys. B 38, 91 (1985).
    [Crossref]
  29. G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II. The Σu+−3Σg+3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 30, 185 (1952).
    [Crossref]
  30. G. Herzberg, “Forbidden Transitions in Diatomic Molecules. III. New Σu−−1Σg−3 and Δu3−Σg−3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 31, 657 (1953).
    [Crossref]
  31. D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: I: The c1Σu−−Χ3Σg− System,” Can. J. Phys. 64, 717 (1986).
    [Crossref]
  32. P. M. Borrell, P. Borrell, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: II: The A3Σu+−Χ3Σg− System,” Can. J. Phys. 64, 721 (1986).
    [Crossref]
  33. B. Coquart, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: III: The A′3Δu−Χ3Σg− System,” Can. J. Phys. 64, 726 (1986).
    [Crossref]
  34. J. Brossel, F. Bitter, “A New “Double Resonance” Method for Investigating Atomic Energy Levels,” Phys. Rev. 86, 308 (1952).
    [Crossref]
  35. H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), p. 182.
  36. H. Kildal, R. L. Dyer, “Comparison of Laser Methods for the Remote Detection of Atmospheric Pollutants,” Proc. IEEE 59, 1644 (1971).
    [Crossref]
  37. P. M. Doherty, D. R. Crosley, “Polarization of Laser-Induced Fluorescence in OH in an Atmospheric Pressure Flame,” Appl. Opt. 23, 713 (1984).
    [Crossref] [PubMed]
  38. H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.
  39. R. M. Measures, G. Pilon, “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere,” Opto-Electronics 4, 141 (1972).
    [Crossref]
  40. F. S. Acton, Numerical Methods that Work (Harper & Row, New York, 1970), p. 51.
  41. G. P. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (Clarendon, Oxford, 1985), p. 7.

1987 (1)

1986 (4)

D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: I: The c1Σu−−Χ3Σg− System,” Can. J. Phys. 64, 717 (1986).
[Crossref]

P. M. Borrell, P. Borrell, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: II: The A3Σu+−Χ3Σg− System,” Can. J. Phys. 64, 721 (1986).
[Crossref]

B. Coquart, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: III: The A′3Δu−Χ3Σg− System,” Can. J. Phys. 64, 726 (1986).
[Crossref]

H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin, “Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring,” Appl. Opt. 25, 403 (1986).
[Crossref] [PubMed]

1985 (4)

C. Granier, J. P. Jégou, G. Megie, “Resonant Lidar Detection of Ca and Ca+ in the Upper Atmosphere,” Geophys. Res. Lett. 12, 10 (1985).
[Crossref]

K. H. Fricke, U. von Zahn, “Mesopause Temperatures Derived from Probing the Hyperfine Structure of the D2 Resonance Line of Sodium by Lidar,” J. Atmos. Terr. Phys. 47, 499 (1985).
[Crossref]

Y. Nishimura, T. Fujimoto, “λ = 2537 Å Line from a Low-Pressure Mercury Discharge Lamp. Emission Profile and Line Absorption by a Gas Containing a Mercury Vapor,” Appl. Phys. B 38, 91 (1985).
[Crossref]

O. Lindqvist, H. Rodhe, “Atmospheric Mercury—a Review,” Tellus 37B, 136 (1985).
[Crossref]

1984 (2)

1983 (1)

J. C. Varekamp, P. R. Buceck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

1982 (2)

1981 (3)

J. C. Varekamp, P. R. Buseck, “Mercury Emissions from Mount St. Helens During September 1980,” Nature London 293, 555 (1981).
[Crossref]

F. Slemr, W. Seiler, G. Schuster, “Latitudinal Distribution of Mercury over the Atlantic Ocean,” J. Geophys. Res. 86, 1159 (1981).
[Crossref]

R. W. Klusman, J. D. Webster, “Meteorological Noise in Crustal Gas Emission and Relevance to Geochemical Exploration,” J. Geochem. Explor. 15, 63 (1981).
[Crossref]

1980 (1)

E. Kromer, G. Friedrich, P. Wallner, “Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks,” J. Geochem. Explor. 15, 51 (1980).

1979 (3)

W. F. Fitzgerald, G. A. Gill, “Subnanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis,” Anal. Chem. 51, 1714 (1979).
[Crossref]

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
[Crossref]

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979).
[Crossref]

1977 (1)

D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
[Crossref] [PubMed]

1972 (3)

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

J. H. McCarthy, “Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits,” J. Geochem. Explor. 1, 143 (1972).
[Crossref]

R. M. Measures, G. Pilon, “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere,” Opto-Electronics 4, 141 (1972).
[Crossref]

1971 (1)

H. Kildal, R. L. Dyer, “Comparison of Laser Methods for the Remote Detection of Atmospheric Pollutants,” Proc. IEEE 59, 1644 (1971).
[Crossref]

1968 (2)

V. Z. Furzov, N. B. Volfson, A. G. Khvalovskiy, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Acad. Nauk SSSR 179, 208 (1968).

S. H. Williston, “Mercury in the Atmosphere,” J. Geophys. Res. 73, 7051 (1968).
[Crossref]

1953 (1)

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. III. New Σu−−1Σg−3 and Δu3−Σg−3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 31, 657 (1953).
[Crossref]

1952 (2)

J. Brossel, F. Bitter, “A New “Double Resonance” Method for Investigating Atomic Energy Levels,” Phys. Rev. 86, 308 (1952).
[Crossref]

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II. The Σu+−3Σg+3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 30, 185 (1952).
[Crossref]

Acton, F. S.

F. S. Acton, Numerical Methods that Work (Harper & Row, New York, 1970), p. 51.

Aldén, M.

Bitter, F.

J. Brossel, F. Bitter, “A New “Double Resonance” Method for Investigating Atomic Energy Levels,” Phys. Rev. 86, 308 (1952).
[Crossref]

Bjarnasson, J. Ö.

H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.

Borrell, P.

P. M. Borrell, P. Borrell, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: II: The A3Σu+−Χ3Σg− System,” Can. J. Phys. 64, 721 (1986).
[Crossref]

Borrell, P. M.

P. M. Borrell, P. Borrell, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: II: The A3Σu+−Χ3Σg− System,” Can. J. Phys. 64, 721 (1986).
[Crossref]

Bristow, Q.

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Brossel, J.

J. Brossel, F. Bitter, “A New “Double Resonance” Method for Investigating Atomic Energy Levels,” Phys. Rev. 86, 308 (1952).
[Crossref]

Brosset, C.

C. Brosset, “Total Airborne Mercury and Its Possible Origin,” Water Air Soil Pollut. 17, 37 (1982).

Buceck, P. R.

J. C. Varekamp, P. R. Buceck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

Buseck, P. R.

J. C. Varekamp, P. R. Buseck, “Mercury Emissions from Mount St. Helens During September 1980,” Nature London 293, 555 (1981).
[Crossref]

Coquart, B.

B. Coquart, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: III: The A′3Δu−Χ3Σg− System,” Can. J. Phys. 64, 726 (1986).
[Crossref]

Crecelius, E. A.

D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
[Crossref] [PubMed]

Crosley, D. R.

Doherty, P. M.

Dyer, R. L.

H. Kildal, R. L. Dyer, “Comparison of Laser Methods for the Remote Detection of Atmospheric Pollutants,” Proc. IEEE 59, 1644 (1971).
[Crossref]

Eberling, C.

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
[Crossref]

Edner, H.

Faris, G.

H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.

Fitzgerald, W. F.

W. F. Fitzgerald, G. A. Gill, “Subnanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis,” Anal. Chem. 51, 1714 (1979).
[Crossref]

Fredriksson, K.

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause Temperatures Derived from Probing the Hyperfine Structure of the D2 Resonance Line of Sodium by Lidar,” J. Atmos. Terr. Phys. 47, 499 (1985).
[Crossref]

Friedrich, G.

E. Kromer, G. Friedrich, P. Wallner, “Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks,” J. Geochem. Explor. 15, 51 (1980).

Fruchter, J. S.

D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
[Crossref] [PubMed]

Fujimoto, T.

Y. Nishimura, T. Fujimoto, “λ = 2537 Å Line from a Low-Pressure Mercury Discharge Lamp. Emission Profile and Line Absorption by a Gas Containing a Mercury Vapor,” Appl. Phys. B 38, 91 (1985).
[Crossref]

Furzov, V. Z.

V. Z. Furzov, N. B. Volfson, A. G. Khvalovskiy, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Acad. Nauk SSSR 179, 208 (1968).

Gill, G. A.

W. F. Fitzgerald, G. A. Gill, “Subnanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis,” Anal. Chem. 51, 1714 (1979).
[Crossref]

Granier, C.

C. Granier, J. P. Jégou, G. Megie, “Resonant Lidar Detection of Ca and Ca+ in the Upper Atmosphere,” Geophys. Res. Lett. 12, 10 (1985).
[Crossref]

Herzberg, G.

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. III. New Σu−−1Σg−3 and Δu3−Σg−3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 31, 657 (1953).
[Crossref]

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II. The Σu+−3Σg+3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 30, 185 (1952).
[Crossref]

Inaba, H.

H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), p. 182.

Jégou, J. P.

C. Granier, J. P. Jégou, G. Megie, “Resonant Lidar Detection of Ca and Ca+ in the Upper Atmosphere,” Geophys. Res. Lett. 12, 10 (1985).
[Crossref]

Jonasson, I. R.

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Khvalovskiy, A. G.

V. Z. Furzov, N. B. Volfson, A. G. Khvalovskiy, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Acad. Nauk SSSR 179, 208 (1968).

Kildal, H.

H. Kildal, R. L. Dyer, “Comparison of Laser Methods for the Remote Detection of Atmospheric Pollutants,” Proc. IEEE 59, 1644 (1971).
[Crossref]

Klusman, R. W.

R. W. Klusman, J. D. Webster, “Meteorological Noise in Crustal Gas Emission and Relevance to Geochemical Exploration,” J. Geochem. Explor. 15, 63 (1981).
[Crossref]

Kristmannsdottir, H.

H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.

Kromer, E.

E. Kromer, G. Friedrich, P. Wallner, “Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks,” J. Geochem. Explor. 15, 51 (1980).

Lindqvist, O.

O. Lindqvist, H. Rodhe, “Atmospheric Mercury—a Review,” Tellus 37B, 136 (1985).
[Crossref]

Ludwick, J. D.

D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
[Crossref] [PubMed]

McCarthy, J. H.

J. H. McCarthy, “Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits,” J. Geochem. Explor. 1, 143 (1972).
[Crossref]

Measures, R. M.

R. M. Measures, G. Pilon, “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere,” Opto-Electronics 4, 141 (1972).
[Crossref]

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

Megie, G.

C. Granier, J. P. Jégou, G. Megie, “Resonant Lidar Detection of Ca and Ca+ in the Upper Atmosphere,” Geophys. Res. Lett. 12, 10 (1985).
[Crossref]

Nishimura, Y.

Y. Nishimura, T. Fujimoto, “λ = 2537 Å Line from a Low-Pressure Mercury Discharge Lamp. Emission Profile and Line Absorption by a Gas Containing a Mercury Vapor,” Appl. Phys. B 38, 91 (1985).
[Crossref]

Pätz, H. W.

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979).
[Crossref]

Perner, D.

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979).
[Crossref]

U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long-Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 17.

Pilon, G.

R. M. Measures, G. Pilon, “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere,” Opto-Electronics 4, 141 (1972).
[Crossref]

Platt, U.

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979).
[Crossref]

U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long-Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 17.

Ramsay, D. A.

D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: I: The c1Σu−−Χ3Σg− System,” Can. J. Phys. 64, 717 (1986).
[Crossref]

B. Coquart, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: III: The A′3Δu−Χ3Σg− System,” Can. J. Phys. 64, 726 (1986).
[Crossref]

P. M. Borrell, P. Borrell, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: II: The A3Σu+−Χ3Σg− System,” Can. J. Phys. 64, 721 (1986).
[Crossref]

Robbins, J. C.

J. C. Robbins, “Zeeman Spectrometer for Measurements of Atmospheric Mercury Vapour,” in Geochemical Exploration, M. J. Jones, Ed. (Institute of Mining & Metallurgy, London, 1973), p. 315.

Robertson, D. E.

D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
[Crossref] [PubMed]

Rodhe, H.

O. Lindqvist, H. Rodhe, “Atmospheric Mercury—a Review,” Tellus 37B, 136 (1985).
[Crossref]

Roggendorf, P.

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
[Crossref]

Schuster, G.

F. Slemr, W. Seiler, G. Schuster, “Latitudinal Distribution of Mercury over the Atlantic Ocean,” J. Geophys. Res. 86, 1159 (1981).
[Crossref]

Seiler, W.

F. Slemr, W. Seiler, G. Schuster, “Latitudinal Distribution of Mercury over the Atlantic Ocean,” J. Geophys. Res. 86, 1159 (1981).
[Crossref]

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
[Crossref]

Sigurdsson, K. H.

H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.

Slemr, F.

F. Slemr, W. Seiler, G. Schuster, “Latitudinal Distribution of Mercury over the Atlantic Ocean,” J. Geophys. Res. 86, 1159 (1981).
[Crossref]

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
[Crossref]

Smith, G. P.

G. P. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (Clarendon, Oxford, 1985), p. 7.

Sunesson, A.

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile Remote Sensing System for Atmospheric Monitoring,” Appl. Opt. 26, 4330 (1987).
[Crossref] [PubMed]

H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin, “Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring,” Appl. Opt. 25, 403 (1986).
[Crossref] [PubMed]

H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.

A. Sunesson, “Construction of a Multipass Absorption Cell,” Lund Reports on Atomic Physics LRAP-46, Lund Institute of Technology (1986).

Svanberg, S.

Unéus, L.

Varekamp, J. C.

J. C. Varekamp, P. R. Buceck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

J. C. Varekamp, P. R. Buseck, “Mercury Emissions from Mount St. Helens During September 1980,” Nature London 293, 555 (1981).
[Crossref]

Volfson, N. B.

V. Z. Furzov, N. B. Volfson, A. G. Khvalovskiy, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Acad. Nauk SSSR 179, 208 (1968).

von Zahn, U.

K. H. Fricke, U. von Zahn, “Mesopause Temperatures Derived from Probing the Hyperfine Structure of the D2 Resonance Line of Sodium by Lidar,” J. Atmos. Terr. Phys. 47, 499 (1985).
[Crossref]

Wallin, S.

Wallner, P.

E. Kromer, G. Friedrich, P. Wallner, “Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks,” J. Geochem. Explor. 15, 51 (1980).

Webster, J. D.

R. W. Klusman, J. D. Webster, “Meteorological Noise in Crustal Gas Emission and Relevance to Geochemical Exploration,” J. Geochem. Explor. 15, 63 (1981).
[Crossref]

Wendt, W.

Williston, S. H.

S. H. Williston, “Mercury in the Atmosphere,” J. Geophys. Res. 73, 7051 (1968).
[Crossref]

Anal. Chem. (1)

W. F. Fitzgerald, G. A. Gill, “Subnanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis,” Anal. Chem. 51, 1714 (1979).
[Crossref]

Anal. Chim. Acta (1)

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The Determination of Total Gaseous Mercury in Air at Background Levels,” Anal. Chim. Acta 110, 35 (1979).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. Nishimura, T. Fujimoto, “λ = 2537 Å Line from a Low-Pressure Mercury Discharge Lamp. Emission Profile and Line Absorption by a Gas Containing a Mercury Vapor,” Appl. Phys. B 38, 91 (1985).
[Crossref]

Can. J. Phys. (5)

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II. The Σu+−3Σg+3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 30, 185 (1952).
[Crossref]

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. III. New Σu−−1Σg−3 and Δu3−Σg−3 Absorption Bands of the Oxygen Molecule,”Can. J. Phys. 31, 657 (1953).
[Crossref]

D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: I: The c1Σu−−Χ3Σg− System,” Can. J. Phys. 64, 717 (1986).
[Crossref]

P. M. Borrell, P. Borrell, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: II: The A3Σu+−Χ3Σg− System,” Can. J. Phys. 64, 721 (1986).
[Crossref]

B. Coquart, D. A. Ramsay, “High-Resolution Studies of the Near-Ultraviolet Bands of Oxygen: III: The A′3Δu−Χ3Σg− System,” Can. J. Phys. 64, 726 (1986).
[Crossref]

Can. Min. J. (1)

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Dokl. Acad. Nauk SSSR (1)

V. Z. Furzov, N. B. Volfson, A. G. Khvalovskiy, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Acad. Nauk SSSR 179, 208 (1968).

Geophys. Res. Lett. (1)

C. Granier, J. P. Jégou, G. Megie, “Resonant Lidar Detection of Ca and Ca+ in the Upper Atmosphere,” Geophys. Res. Lett. 12, 10 (1985).
[Crossref]

Geothermics (1)

J. C. Varekamp, P. R. Buceck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

J. Atmos. Terr. Phys. (1)

K. H. Fricke, U. von Zahn, “Mesopause Temperatures Derived from Probing the Hyperfine Structure of the D2 Resonance Line of Sodium by Lidar,” J. Atmos. Terr. Phys. 47, 499 (1985).
[Crossref]

J. Geochem. Explor. (3)

J. H. McCarthy, “Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits,” J. Geochem. Explor. 1, 143 (1972).
[Crossref]

E. Kromer, G. Friedrich, P. Wallner, “Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks,” J. Geochem. Explor. 15, 51 (1980).

R. W. Klusman, J. D. Webster, “Meteorological Noise in Crustal Gas Emission and Relevance to Geochemical Exploration,” J. Geochem. Explor. 15, 63 (1981).
[Crossref]

J. Geophys. Res. (3)

F. Slemr, W. Seiler, G. Schuster, “Latitudinal Distribution of Mercury over the Atlantic Ocean,” J. Geophys. Res. 86, 1159 (1981).
[Crossref]

S. H. Williston, “Mercury in the Atmosphere,” J. Geophys. Res. 73, 7051 (1968).
[Crossref]

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979).
[Crossref]

Nature London (1)

J. C. Varekamp, P. R. Buseck, “Mercury Emissions from Mount St. Helens During September 1980,” Nature London 293, 555 (1981).
[Crossref]

Opt. Lett. (2)

Opto-Electronics (1)

R. M. Measures, G. Pilon, “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere,” Opto-Electronics 4, 141 (1972).
[Crossref]

Phys. Rev. (1)

J. Brossel, F. Bitter, “A New “Double Resonance” Method for Investigating Atomic Energy Levels,” Phys. Rev. 86, 308 (1952).
[Crossref]

Proc. IEEE (1)

H. Kildal, R. L. Dyer, “Comparison of Laser Methods for the Remote Detection of Atmospheric Pollutants,” Proc. IEEE 59, 1644 (1971).
[Crossref]

Science (1)

D. E. Robertson, E. A. Crecelius, J. S. Fruchter, J. D. Ludwick, “Mercury Emissions from Geothermal Power Plants,” Science 196, 1094 (1977).
[Crossref] [PubMed]

Tellus (1)

O. Lindqvist, H. Rodhe, “Atmospheric Mercury—a Review,” Tellus 37B, 136 (1985).
[Crossref]

Water Air Soil Pollut. (1)

C. Brosset, “Total Airborne Mercury and Its Possible Origin,” Water Air Soil Pollut. 17, 37 (1982).

Other (10)

J. C. Robbins, “Zeeman Spectrometer for Measurements of Atmospheric Mercury Vapour,” in Geochemical Exploration, M. J. Jones, Ed. (Institute of Mining & Metallurgy, London, 1973), p. 315.

D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Berlin, 1983).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

J. O. Nriagu, Ed., The Biogeochemistry of Mercury in the Environment (Elsevier/North-Holland, Amsterdam, 1979).

H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), p. 182.

U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long-Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 17.

A. Sunesson, “Construction of a Multipass Absorption Cell,” Lund Reports on Atomic Physics LRAP-46, Lund Institute of Technology (1986).

F. S. Acton, Numerical Methods that Work (Harper & Row, New York, 1970), p. 51.

G. P. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (Clarendon, Oxford, 1985), p. 7.

H. Edner, G. Faris, A. Sunesson, S. Svanberg, J. Ö. Bjarnasson, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar Search for Atmospheric Atomic Mercury in Icelandic Geothermal Fields,” manuscript in preparation for J. Geophys. Res.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Temporally resolved White cell signal.

Fig. 3
Fig. 3

Cell spectra: (a) overview with oxygen interference and (b) enlarged Hg signal with isotopic and hyperfine structure lines indicated.

Fig. 4
Fig. 4

Diagram of data used for cross-sectional determination.

Fig. 5
Fig. 5

Recording of the absorption line from mercury released from a 500-m distant chlorine–alkali plant. The transmission on the vertical scale has not been compensated for natural extinction and 1/R2 dependence.

Fig. 6
Fig. 6

(a) On/off-resonance lidar curves and (b) resulting DIAL curve.

Fig. 7
Fig. 7

Vertical scan of the Hg plume downwind from a chlorine–alkali plant.

Fig. 8
Fig. 8

Horizontal scan of Hg distribution over a chlorine–alkali plant.

Fig. 9
Fig. 9

Recording of Hg background concentration.

Fig. 10
Fig. 10

Lidar/DIAL curves recorded for (a) both polarizations and (b) parallel and (c) perpendicular to the laser polarization.

Fig. 11
Fig. 11

Mercury concentration curves calculated with (solid line) and without (dashed line) correction for fluorescence.

Fig. 12
Fig. 12

DIAL curves for a simulated Hg cloud: (a) displaying the fluorescence effect (dashed line) and (b) calculated concentration profiles obtained with (dashed line) and without (dotted line) correction for fluorescence.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P A S ( λ , R ) = C ( λ , R ) β ( λ , R ) exp { 2 0 R [ N i ( R ) σ i ( λ ) + N r ( R ) σ r ( λ ) ] d R } .
P F ( λ , R ) = C ( λ , R ) N i ( R ) F ( λ , R ) exp { 2 0 R [ N i ( R ) σ i ( λ ) + N r ( R ) σ r ( λ ) ] d R }  ,
P ( λ , R ) = C ( λ , R ) [ β ( λ , R ) + N i ( R ) F ( λ , R ) ] × exp { 2 0 R [ N i ( R ) σ i ( λ ) + N r ( R ) σ r ( λ ) ] d R } .
P ^ ( R ) = [ 1 + N i ( R ) F ( R ) β ( R ) ] exp [ 2 σ diff 0 R N i ( R ) d R ]  ,
P ^ ( R + Δ R ) = P ^ ( R ) 1 + F ( R ) β ( R ) N ( R ) [ 1 + F ( R + Δ R ) β ( R + Δ R ) N ( R + Δ R ) ] × exp [ 2 σ diff R R + Δ R N ( R ) d R ] .
P ^ ( R + Δ R ) = P ^ N F ( R ) [ 1 + F ( R + Δ R ) β ( R + Δ R ) N ( R + Δ R ) ] × exp [ 2 σ diff R R + Δ R N ( R ) d R ]  ,
P ^ ( R + Δ R ) P ^ N F ( R ) [ 1 + F ( R + Δ R ) β ( R + Δ R ) N ( R + Δ R ) 2 σ diff N Δ R ]  ,
P ^ ( R + Δ R ) P ^ N F ( R ) [ 1 + N ( F β 2 σ diff Δ R ) ]   .
Δ R F 2 σ diff β ,
P ^ 2 = P ^ 1 1 + F 1 β 1 N 1 [ 1 + F 2 β 2 N 2 ] exp [ σ diff ( N 1 + N 2 ) Δ R ]   .
[ 1 + F 1 β 1 N 1 ] exp ( σ diff N 1 Δ R ) = P ^ 1 P ^ 2 [ 1 + F 2 β 2 N 2 ] exp ( σ diff N 2 Δ R ) .
Δ R 2 [ σ diff Δ R F β + σ diff Δ R ]

Metrics