Abstract

Ground-based and space-based coherent DIAL water vapor measurement performance at the 2.1-μm Ho:YAG wavelength is presented using a Monte Carlo computer simulation. The stochastic simulation allowed improved modeling of lidar system, platform, atmospheric, and data processing parameter effects on performance and better understanding of their interrelationships. Results indicate that accurate water vapor measurements in the lower troposphere are potentially achievable from both ground- and space-based platforms.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T.D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980).
  2. R. M. Hardesty, “Coherent DIAL Measurement of Range-Resolved Water Vapor Concentration,” Appl. Opt. 23, 2545 (1984).
    [CrossRef] [PubMed]
  3. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033 (1987).
    [CrossRef] [PubMed]
  4. R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239, 742 (1988).
    [CrossRef] [PubMed]
  5. R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  6. E. E. Remsberg, L. L. Gordley, “Analysis of Differential Absorption Lidar from the Space Shuttle,” Appl. Opt. 17, 624 (1978).
    [CrossRef] [PubMed]
  7. E. V. Browell, T. D. Wilkerson, T. J. Mcllrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979); see also pp. 19–28 in LASA—Lidar Atmospheric Sounder and Altimeter, Vol. IId in Earth Observing System Instrument Panel Report (NASA, 1987).
    [CrossRef] [PubMed]
  8. UchinoO.McCormickM. P.SwisslerT. J.McMasterL. R. “Error Analysis of DIAL Measurements of Ozone by a Shuttle Excimer Lidar,” Appl. Opt. 25, 3946 (1986).
    [CrossRef] [PubMed]
  9. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), Chap. 4.
    [CrossRef]
  10. R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  11. M. J. Kavaya, R. T. Menzies, “Lidar Aerosol Backscatter Measurements: Systematic, Modeling, and Calibration Error Considerations,” Appl. Opt. 24, 3444 (1985).
    [CrossRef] [PubMed]
  12. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
    [CrossRef]
  13. Frehlich R. G., Kavaya M. J., “Monostatic Heterodyne Laser Radar SNR with Weak Atmospheric Refractive Turbulence,” in preparation.
  14. H. T. Yura, “Signal-to-Noise Ratio of Heterodyne Lidar Systems in the Presence of Atmospheric Turbulence,” Opt. Acta 26, 627 (1979).
    [CrossRef]
  15. T. Takenaka, K. Tanaka, andFukumitsuO. “Signal-to-Noise Ratio in Optical Heterodyne Detection for Gaussian Fields,” Appl. Opt. 17, 3466 (1978).
    [CrossRef] [PubMed]
  16. R. J. Hill, S. F. Clifford, R. S. Lawrence, “Refractive-Index and Absorption Fluctuations in the Infrared Caused by Temperature, Humidity, and Pressure Fluctuations,” J. Opt. Soc. Am. 70, 1192 (1980).
    [CrossRef]
  17. J. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964).
  18. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).
  19. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058 (1987).
    [CrossRef] [PubMed]
  20. M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Backscatter,” Appl. Opt. 26, 2598 (1987).
    [CrossRef] [PubMed]
  21. W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential Absorption Lidar Signal Averaging,” Appl. Opt. 27, 1934 (1988).
    [CrossRef] [PubMed]
  22. N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG Oscillator and Amplifier”, IEEE J. Quantum Electron. QE-17, 1303 (1981).
    [CrossRef]
  23. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of Diode-Laser-Pumped, Tm-Sensitized HO:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678 (1987).
    [CrossRef] [PubMed]
  24. R. M. Huffaker, T. R. Lawrence, M. J. Post, J. T. Priestly, F. F. Hall, R. A. Richter, R. J. Keeler, “Feasibility Studies for a Global Wind Measuring Satellite System (Windsat): Analysis of Simulated Performance,” Appl. Opt. 23, 2523 (1984).
    [CrossRef] [PubMed]

1988 (2)

1987 (4)

1986 (2)

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

UchinoO.McCormickM. P.SwisslerT. J.McMasterL. R. “Error Analysis of DIAL Measurements of Ozone by a Shuttle Excimer Lidar,” Appl. Opt. 25, 3946 (1986).
[CrossRef] [PubMed]

1985 (1)

1984 (2)

1981 (1)

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG Oscillator and Amplifier”, IEEE J. Quantum Electron. QE-17, 1303 (1981).
[CrossRef]

1980 (1)

1979 (2)

1978 (2)

1974 (1)

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Barnes, N. P.

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG Oscillator and Amplifier”, IEEE J. Quantum Electron. QE-17, 1303 (1981).
[CrossRef]

Bogan, J. R.

Brothers, A. M.

Browell, E. V.

Byer, R. L.

Clifford, S. F.

Codona, J. L.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), Chap. 4.
[CrossRef]

Creamer, D. B.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

Dalu, G.

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T.D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980).

Fan, T. Y.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).

Flatté, S. M.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

Frehlich, R. G.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).

Gettemy, D. J.

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG Oscillator and Amplifier”, IEEE J. Quantum Electron. QE-17, 1303 (1981).
[CrossRef]

Gordley, L. L.

Grant, W. B.

Hall, F. F.

Hardesty, R. M.

Henyey, F. S.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

Hill, R. J.

Huber, G.

Huffaker, R. M.

Kavaya, M. J.

Keeler, R. J.

Lawrence, R. S.

Lawrence, T. R.

Lumley, J. L.

J. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964).

Margolis, J. S.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).

Mcllrath, T. J.

Measures, R. M.

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).

Menzies, R. T.

Milton, M. J. T.

Mitzscherlich, P.

Panofsky, H. A.

J. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964).

Post, M. J.

Prabhakara, C.

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T.D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980).

Priestly, J. T.

Remsberg, E. E.

Richter, R. A.

Rothman, L. S.

Russell, P. B.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), Chap. 4.
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).

Takenaka, T.

Tanaka, K.

Tratt, D. M.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).

Wilkerson, T. D.

Woods, P. T.

Yura, H. T.

H. T. Yura, “Signal-to-Noise Ratio of Heterodyne Lidar Systems in the Presence of Atmospheric Turbulence,” Opt. Acta 26, 627 (1979).
[CrossRef]

Appl. Opt. (11)

R. M. Hardesty, “Coherent DIAL Measurement of Range-Resolved Water Vapor Concentration,” Appl. Opt. 23, 2545 (1984).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033 (1987).
[CrossRef] [PubMed]

E. E. Remsberg, L. L. Gordley, “Analysis of Differential Absorption Lidar from the Space Shuttle,” Appl. Opt. 17, 624 (1978).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. Mcllrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979); see also pp. 19–28 in LASA—Lidar Atmospheric Sounder and Altimeter, Vol. IId in Earth Observing System Instrument Panel Report (NASA, 1987).
[CrossRef] [PubMed]

UchinoO.McCormickM. P.SwisslerT. J.McMasterL. R. “Error Analysis of DIAL Measurements of Ozone by a Shuttle Excimer Lidar,” Appl. Opt. 25, 3946 (1986).
[CrossRef] [PubMed]

T. Takenaka, K. Tanaka, andFukumitsuO. “Signal-to-Noise Ratio in Optical Heterodyne Detection for Gaussian Fields,” Appl. Opt. 17, 3466 (1978).
[CrossRef] [PubMed]

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058 (1987).
[CrossRef] [PubMed]

M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Backscatter,” Appl. Opt. 26, 2598 (1987).
[CrossRef] [PubMed]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential Absorption Lidar Signal Averaging,” Appl. Opt. 27, 1934 (1988).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, “Lidar Aerosol Backscatter Measurements: Systematic, Modeling, and Calibration Error Considerations,” Appl. Opt. 24, 3444 (1985).
[CrossRef] [PubMed]

R. M. Huffaker, T. R. Lawrence, M. J. Post, J. T. Priestly, F. F. Hall, R. A. Richter, R. J. Keeler, “Feasibility Studies for a Global Wind Measuring Satellite System (Windsat): Analysis of Simulated Performance,” Appl. Opt. 23, 2523 (1984).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

N. P. Barnes, D. J. Gettemy, “Pulsed Ho:YAG Oscillator and Amplifier”, IEEE J. Quantum Electron. QE-17, 1303 (1981).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta (1)

H. T. Yura, “Signal-to-Noise Ratio of Heterodyne Lidar Systems in the Presence of Atmospheric Turbulence,” Opt. Acta 26, 627 (1979).
[CrossRef]

Opt. Lett. (1)

Radio Sci. (1)

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986).
[CrossRef]

Science (1)

R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239, 742 (1988).
[CrossRef] [PubMed]

Other (6)

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T.D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980).

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Berlin, 1976), Chap. 4.
[CrossRef]

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).

J. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (AFCRL, Hanscom Air Force Base, Bedford, MA, Aug. 1972); see also AFGL-TR-86-0110 (May 1986).

Frehlich R. G., Kavaya M. J., “Monostatic Heterodyne Laser Radar SNR with Weak Atmospheric Refractive Turbulence,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Molecular absorption vs wavelength for water vapor only, ground level, and a MLS model atmosphere.

Fig. 2
Fig. 2

Molecular absorption vs wavelength for all molecules, ground level, and a MLS model atmosphere.

Fig. 3
Fig. 3

Molecular absorption vs altitude in a MLS model atmosphere, for the absorbing and nonabsorbing DIAL wavelengths, for all molecules and all molecules except water vapor.

Fig. 4
Fig. 4

Plot of the SRF and its terms vs altitude for the groundbased case.

Fig. 5
Fig. 5

Plot of the receive signal powers at λ A and λ B vs altitude for the ground-based case with no range smoothing.

Fig. 6
Fig. 6

Plot of the true and measured water vapor concentration vs altitude for the ground-based case.

Fig. 7
Fig. 7

Ground-based DIAL standard deviation of error vs altitude.

Fig. 8
Fig. 8

Ground-based DIAL percentage error vs altitude.

Fig. 9
Fig. 9

Ground-based DIAL percentage error vs altitude.

Fig. 10
Fig. 10

Plot of the SRF and its terms vs altitude for the spacebased case.

Fig. 11
Fig. 11

Space-based DIAL percentage error vs altitude.

Fig. 12
Fig. 12

Space-based DIAL percentage error vs altitude.

Fig. 13
Fig. 13

Space-based DIAL percentage error vs altitude.

Tables (3)

Tables Icon

Table I Computer Simulation Input Parameters

Tables Icon

Table II Monte Carlo Coherent DIAL Computer Simulation

Tables Icon

Table III Computer Simulatlon Base Case Parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ρ m ( R ) = 1 2 Δ R K m { ln ( P A 1 P B 2 P A 2 P B 1 ) + δ + Τ e + θ } .
δ = l n ( β A 2 β B 1 β A 1 β B 2 ) ,
θ = l n ( θ A 2 θ B 1 θ A 1 θ B 2 ) ,
S N R ( t ) = η h ν B c ( t τ ) / 2 c t / 2 N U M ( t , R ) S R F ( R ) d R ,
N U M ( t , R ) = P t ( t 2 R c ) β ( R ) A R 2 θ ( R ) × e x p [ 2 0 R α ( R ) d R ] ,
S R F ( R ) = [ 1 + D r 2 2 D t 2 + k 2 D t 2 D r 2 32 R 2 ( 1 R f t ) 2 + k 2 D r 4 64 R 2 ( 1 R f r ) 2 + D r 2 2 S 0 2 ] .
E t ( X , t ) = [ 4 P t ( t ) π D t 2 ] 1 / 2 exp ( 2 X 2 D t 2 i k X 2 2 f t ) .
W r ( X ) = exp ( 2 X 2 D r 2 i k X 2 2 f r ) ,
E L ( X ) = ( 4 P L π D r 2 ) 1 / 2 exp ( 2 X 2 D r 2 ) .
B = ( 1 τ c 4 Δ R ) 1 / 2 .
S 0 = [ μ k 2 0 R C n 2 ( z ) ( 1 z R ) 5 / 3 d z ] 3 / 5 ,
log 10 β ( z ) = 3.51 exp ( z / 4967 ) 9.455.
C n 2 ( z ) = { 1.585 × 10 12 z 4 / 3 3.664 × 10 17 0 10 m < z < 3000 m ,   3000 m < z < 20 k m ,   20 k m < z .

Metrics