Abstract

Laser scanning tomography can be used to assess retinal nerve fiber layer thickness and optic disc topography of the human eye. A pinhole is located at a plane conjugate to the focal plane of the scanning laser beam. This so-called confocal configuration assures that only the light originating from the illuminated focal plane on the retina passes through the pinhole and is detected by the photomultiplier. Consequently, images with high spatial resolution in all directions are obtained. An active optical system (active mirror) further improves the lateral/depth resolution of the laser tomographic scanner. By partially compensating for the optical aberrations introduced by the cornea and lens, the active optical system allows the illuminating beam to be enlarged to 6 mm, thus improving depth resolution twofold.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative Assessment of the Optic Nerve Head with the Laser Tomographic Scanner,” Int. Ophthalmol. 00, 000 (198X), to be published.
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), p. 464.
  3. F. Merkle, K. Freischlad, J.F. Bille, “Development of an Active-OpticalMirror for Astronomical Applications,” in Proceedings, ESO Conference onScientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, Garching, F.R. Germany (Mar. 1981).
  4. E. S. Claflin, N. Bareket, “Configuring an Electrostatic Membrane Mirror by Least-Squares Fitting with Analytically Derived Influence Functions,” J. Opt. Soc. Am. A 3, 1833 (1986).
    [CrossRef]
  5. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  6. Ref. 2, p. 443.
  7. F. W. Campbell, R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. London 186, 558 (1966).
    [PubMed]

1986 (1)

1966 (1)

F. W. Campbell, R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. London 186, 558 (1966).
[PubMed]

Bareket, N.

Bille, J. F.

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative Assessment of the Optic Nerve Head with the Laser Tomographic Scanner,” Int. Ophthalmol. 00, 000 (198X), to be published.

Bille, J.F.

F. Merkle, K. Freischlad, J.F. Bille, “Development of an Active-OpticalMirror for Astronomical Applications,” in Proceedings, ESO Conference onScientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, Garching, F.R. Germany (Mar. 1981).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), p. 464.

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. London 186, 558 (1966).
[PubMed]

Claflin, E. S.

Dreher, A. W.

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative Assessment of the Optic Nerve Head with the Laser Tomographic Scanner,” Int. Ophthalmol. 00, 000 (198X), to be published.

Freischlad, K.

F. Merkle, K. Freischlad, J.F. Bille, “Development of an Active-OpticalMirror for Astronomical Applications,” in Proceedings, ESO Conference onScientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, Garching, F.R. Germany (Mar. 1981).

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. London 186, 558 (1966).
[PubMed]

Merkle, F.

F. Merkle, K. Freischlad, J.F. Bille, “Development of an Active-OpticalMirror for Astronomical Applications,” in Proceedings, ESO Conference onScientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, Garching, F.R. Germany (Mar. 1981).

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Weinreb, R. N.

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative Assessment of the Optic Nerve Head with the Laser Tomographic Scanner,” Int. Ophthalmol. 00, 000 (198X), to be published.

Wilson, T.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), p. 464.

J. Opt. Soc. Am. A (1)

J. Physiol. London (1)

F. W. Campbell, R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. London 186, 558 (1966).
[PubMed]

Other (5)

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative Assessment of the Optic Nerve Head with the Laser Tomographic Scanner,” Int. Ophthalmol. 00, 000 (198X), to be published.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), p. 464.

F. Merkle, K. Freischlad, J.F. Bille, “Development of an Active-OpticalMirror for Astronomical Applications,” in Proceedings, ESO Conference onScientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, Garching, F.R. Germany (Mar. 1981).

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Ref. 2, p. 443.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Focusing mechanism with a galvanometrically driven focusing lens.

Fig. 3
Fig. 3

Active optical focusing unit.

Fig. 4
Fig. 4

Components of the active mirror assembly.

Fig. 5
Fig. 5

Actual active mirror assembly.

Fig. 6
Fig. 6

Cross-sectional image through the retina with an undilated pupil.

Fig. 7
Fig. 7

Cross-sectional image through the retina with a 6-mm pupil diameter.

Fig. 8
Fig. 8

Electrode voltages of the active mirror used for compensation of aberrations.

Fig. 9
Fig. 9

Cross-sectional image through the retina with a 6-mm pupil and active optical aberration compensation.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d d E = n f 6 2 f E 2 + d f E .
d d E n f 6 2 f E 2 ,
d E 0.4 d .
d E max = 0.4 ( ± 3 mm ) = ± 1.2 mm .
ϕ s ( r ) = n = 1 N a n f n ( r ) ,
ϕ K ( r ) = n = 1 N b n f n ( r ) ,
ϕ K ( r ) + ϕ S ( r ) = 0.
ϕ ( r ) = ϕ 0 + 2 π λ 0 n ( r ) d r ,
2 z = - P T ,
P = 0 2 ( V 2 2 d 2 2 - V 1 2 d 1 2 ) ,
Δ V = d 1 ( V 2 2 d 2 2 - 2 0 P ) 1 / 2 - V 1 B .
I ( u ) = [ sin ( u / 4 ) u / 4 ] 4 ,
u = 2 π λ ( N . A . ) 2 z ,
I int ( u ) 0 v 0 I ( u , v ) d v ,
v 0 = 2 π λ r 0 a f ,
z H W 1 2 π ( f a ) 2 n u H W = ± 103 μ m ,

Metrics