Abstract

We present calculations of the temperature dependence of H2O pressure broadening parameters by H2O, CO2, N2, and O2. They were made for Q-lines with a theoretical model which provides a correct treatment of close collisions and has been widely tested. The results should be useful for Raman spectra calculations. A simple law is proposed to deduce halfwidths of P- and R-ines from the Q-line results. The accuracy of this law at high temperature is demonstrated. A simple analytical representation of a constant halfwidth approximation is also given.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
    [CrossRef]
  2. P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647–661 (1949).
    [CrossRef]
  3. C. J. Tsao, B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–88 (1962).
    [CrossRef]
  4. R. W. Davies, “Many-Body Treatment of Pressure Shifts Associated with Collisional Broadening,” Phys. Rev. A 12, 927–946 (1975).
    [CrossRef]
  5. R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparisons of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95–120 (1976).
    [CrossRef]
  6. W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−N2 Collisions,” J. Chem. Phys. 30, 388–399 (1959).
  7. W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−H2O and H2O−O2 Collisions,” J. Quant. Spectrosc. Radiat. Transfer 4, 453–469 (1964).
    [CrossRef]
  8. R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
    [CrossRef] [PubMed]
  9. R. Gamache, L. Rothman, “Temperature Dependence of N2-Broadened Halfwidths of Water Vapor: the Pure Rotation and ν2 Bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
    [CrossRef]
  10. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
    [CrossRef]
  11. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
    [CrossRef]
  12. A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
    [CrossRef]
  13. J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
    [CrossRef]
  14. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
    [CrossRef] [PubMed]
  15. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of CO Line Broadening by H2O, N2, O2, and CO2 in the 200–3000-K Temperature Range,” Appl. Opt. 27, 3063–3065 (1988).
    [CrossRef] [PubMed]
  16. D. Robert, J. Bonamy, “Short Range Forces Effects in Semi-classical Molecular Line-Broadening Calculations,” J. Phys. Paris 40, 923–941 (1979).
  17. L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode-Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40, 569–576 (1988).
    [CrossRef]
  18. J. M. Flaud, C. Camy-Peyret, U. Pierre et Marie Curie; private communication.
  19. J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman Lines,” J. Mol. Spectrosc. 127, 35–43 (1988).
    [CrossRef]
  20. J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
    [CrossRef]

1988 (6)

R. Gamache, L. Rothman, “Temperature Dependence of N2-Broadened Halfwidths of Water Vapor: the Pure Rotation and ν2 Bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of CO Line Broadening by H2O, N2, O2, and CO2 in the 200–3000-K Temperature Range,” Appl. Opt. 27, 3063–3065 (1988).
[CrossRef] [PubMed]

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode-Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40, 569–576 (1988).
[CrossRef]

J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman Lines,” J. Mol. Spectrosc. 127, 35–43 (1988).
[CrossRef]

1987 (3)

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

1986 (1)

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

1984 (1)

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

1983 (1)

1979 (1)

D. Robert, J. Bonamy, “Short Range Forces Effects in Semi-classical Molecular Line-Broadening Calculations,” J. Phys. Paris 40, 923–941 (1979).

1976 (1)

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparisons of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95–120 (1976).
[CrossRef]

1975 (1)

R. W. Davies, “Many-Body Treatment of Pressure Shifts Associated with Collisional Broadening,” Phys. Rev. A 12, 927–946 (1975).
[CrossRef]

1964 (1)

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−H2O and H2O−O2 Collisions,” J. Quant. Spectrosc. Radiat. Transfer 4, 453–469 (1964).
[CrossRef]

1962 (1)

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–88 (1962).
[CrossRef]

1959 (1)

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−N2 Collisions,” J. Chem. Phys. 30, 388–399 (1959).

1949 (1)

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647–661 (1949).
[CrossRef]

Anderson, P. W.

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647–661 (1949).
[CrossRef]

Bauer, A.

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

Benedict, W. S.

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−H2O and H2O−O2 Collisions,” J. Quant. Spectrosc. Radiat. Transfer 4, 453–469 (1964).
[CrossRef]

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−N2 Collisions,” J. Chem. Phys. 30, 388–399 (1959).

Bonamy, J.

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

D. Robert, J. Bonamy, “Short Range Forces Effects in Semi-classical Molecular Line-Broadening Calculations,” J. Phys. Paris 40, 923–941 (1979).

Boulet, C.

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

Camy-Peyret, C.

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

J. M. Flaud, C. Camy-Peyret, U. Pierre et Marie Curie; private communication.

Curnutte, B.

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–88 (1962).
[CrossRef]

Davies, R. W.

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef] [PubMed]

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparisons of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95–120 (1976).
[CrossRef]

R. W. Davies, “Many-Body Treatment of Pressure Shifts Associated with Collisional Broadening,” Phys. Rev. A 12, 927–946 (1975).
[CrossRef]

Flaud, J. M.

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

J. M. Flaud, C. Camy-Peyret, U. Pierre et Marie Curie; private communication.

Gamache, R.

R. Gamache, L. Rothman, “Temperature Dependence of N2-Broadened Halfwidths of Water Vapor: the Pure Rotation and ν2 Bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

Gamache, R. R.

Godon, M.

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

Hartmann, J. M.

J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman Lines,” J. Mol. Spectrosc. 127, 35–43 (1988).
[CrossRef]

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode-Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40, 569–576 (1988).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of CO Line Broadening by H2O, N2, O2, and CO2 in the 200–3000-K Temperature Range,” Appl. Opt. 27, 3063–3065 (1988).
[CrossRef] [PubMed]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Kaplan, L. D.

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−H2O and H2O−O2 Collisions,” J. Quant. Spectrosc. Radiat. Transfer 4, 453–469 (1964).
[CrossRef]

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−N2 Collisions,” J. Chem. Phys. 30, 388–399 (1959).

Keddar, M.

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

Labani, B.

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Oli, B. A.

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparisons of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95–120 (1976).
[CrossRef]

Perrin, M. Y.

Robert, D.

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

D. Robert, J. Bonamy, “Short Range Forces Effects in Semi-classical Molecular Line-Broadening Calculations,” J. Phys. Paris 40, 923–941 (1979).

Rosenmann, L.

Rothman, L.

R. Gamache, L. Rothman, “Temperature Dependence of N2-Broadened Halfwidths of Water Vapor: the Pure Rotation and ν2 Bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

Taine, J.

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of CO Line Broadening by H2O, N2, O2, and CO2 in the 200–3000-K Temperature Range,” Appl. Opt. 27, 3063–3065 (1988).
[CrossRef] [PubMed]

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode-Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40, 569–576 (1988).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Tsao, C. J.

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–88 (1962).
[CrossRef]

Appl. Opt. (3)

J. Chem. Phys. (4)

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. I. Theoretical Model for Both Distant and Close Collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. III. Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−N2 Collisions,” J. Chem. Phys. 30, 388–399 (1959).

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation–Vibration Lines for Asymmetric Top Molecules. II. H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

J. Mol. Spectrosc. (2)

R. Gamache, L. Rothman, “Temperature Dependence of N2-Broadened Halfwidths of Water Vapor: the Pure Rotation and ν2 Bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman Lines,” J. Mol. Spectrosc. 127, 35–43 (1988).
[CrossRef]

J. Phys. Paris (1)

D. Robert, J. Bonamy, “Short Range Forces Effects in Semi-classical Molecular Line-Broadening Calculations,” J. Phys. Paris 40, 923–941 (1979).

J. Quant. Spectrosc. Radiat. Transfer (7)

L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode-Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40, 569–576 (1988).
[CrossRef]

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).
[CrossRef]

J. M. Hartmann, C. Camy-Peyret, J. M. Flaud, J. Bonamy, D. Robert, “New Accurate Calculations of Ozone Line Broadening by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 40, 489–495 (1988).
[CrossRef]

W. S. Benedict, L. D. Kaplan, “Calculation of Line-Widths in H2O−H2O and H2O−O2 Collisions,” J. Quant. Spectrosc. Radiat. Transfer 4, 453–469 (1964).
[CrossRef]

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–88 (1962).
[CrossRef]

J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparisons of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95–120 (1976).
[CrossRef]

Phys. Rev. (1)

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647–661 (1949).
[CrossRef]

Phys. Rev. A (1)

R. W. Davies, “Many-Body Treatment of Pressure Shifts Associated with Collisional Broadening,” Phys. Rev. A 12, 927–946 (1975).
[CrossRef]

Other (1)

J. M. Flaud, C. Camy-Peyret, U. Pierre et Marie Curie; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated temperature dependences of the broadening of the — 111→111 and - - - 881→881 rotational lines by O, H2O and ×, N2.

Fig. 2
Fig. 2

Q-line halfwidths at 1800 K vs the energy of the lower level: □, H2O−H2O; ×, H2O−N2; —, constant halfwidth approximation.

Tables (5)

Tables Icon

Table I Calculated Broadening Parameters γ(300 K) (in 10−3 cm−1 atm−1) and N [See Eq. (2)] for Rotational Q-Lines; E is the Energy of the Lower Level

Tables Icon

Table II Values of n to be Used in Eq. (8)

Tables Icon

Table III Relative Differences (in %) Between the Broadenings of P-Lines Calculated from Eqs. (1) and (8) with the Data of Tables I and II

Tables Icon

Table IV Comparisons Between Calculated Broadening Parameters

Tables Icon

Table V Parameters of the Constant Halfwidth Approximation [Eq. (10)]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

γ RB = ( N 2 υ ¯ / 2 π c ) R min + 2 π R [ υ c ( R , υ ¯ ) / υ ¯ ] 2 × { 1 exp [ S ( R , υ ¯ , J i τ i , J f τ f , υ 2 J 2 ] } dR υ 2 J 2 ,
γ ( T ) = γ ( 300 K ) [ 300 / T ] N ,
γ RB ( i , f ) ( N 2 υ ¯ / 2 c ) R o ( i , f ) 2 [ υ c ( Ro , υ ¯ ) / υ ¯ ] 2 ,
exp { S [ R o ( i , f ) , υ ¯ , i , f , υ 2 = 0 , J ̅ 2 ] } = α ,
S ( R , υ ¯ , i , f , υ 2 = 0 , J ̅ 2 ) ln ( α ) [ R o ( i , f ) / R ] ( 2 n 2 ) × [ υ c ( R o ( i , f ) , υ ¯ ) / υ c ( R , υ ̅ ) ] 2 .
S ( R , υ ̅ , i , f , υ 2 = 0 , J ̅ 2 ) [ S ( R , υ ¯ , i , i , υ 2 = 0 , J ¯ 2 ) + S ( R , υ ¯ , f , f , υ 2 = 0 , J ¯ 2 ) ] / 2 ,
R o ( i , f ) ( 2 n 2 ) [ R o ( i , i ) ( 2 n 2 ) + R o ( f , f ) ( 2 n 2 ) ] / 2 .
γ ϑ J τ ϑ J τ γ 0 J τ 0 J τ { [ γ 0 J τ 0 J τ ( n 1 ) + γ 0 J τ 0 J τ ( n 1 ) ] / 2 } 1 / ( n 1 ) .
γ av ( T ) = J τ ρ J τ ( T ) γ J τ J τ ( T ) ,
γ av ( T ) = γ av ( 300 K ) [ 300 / T ] N av ( T ) ; N av ( T ) = N av ( 300 K ) [ 300 / T ] β .

Metrics