## Abstract

The alignment and chromatic sensitivity of holographic optical elements for use in optical interconnect systems are quantified. The effects of these image degrading parameters are related to the frequency and power requirements for CMOS compatible detectors in an optical interconnect system. Techniques for reducing the magnitude of these problems with substrate-mode holograms are described, and experimental results demonstrating these designs are presented.

© 1989 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\frac{sin\phantom{\rule{0em}{0ex}}{\alpha}_{i}}{{\lambda}_{r}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\frac{sin\phantom{\rule{0em}{0ex}}{\alpha}_{r}}{{\lambda}_{r}}=\frac{1}{\Lambda}\phantom{\rule{0.2em}{0ex}},$$
(2)
$$\frac{sin\phantom{\rule{0em}{0ex}}{\alpha}_{i}}{{\lambda}_{r}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\frac{sin\phantom{\rule{0em}{0ex}}{\alpha}_{r}}{{\lambda}_{r}}=\frac{sin\phantom{\rule{0em}{0ex}}{\alpha}_{o}}{{\lambda}_{c}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\frac{sin\phantom{\rule{0em}{0ex}}{\alpha}_{c}}{{\lambda}_{c}}\phantom{\rule{0.2em}{0ex}},$$
(3)
$$\begin{array}{ll}Q\hfill & ={\mathit{\int}}_{0}^{\tau}\phantom{\rule{0.3em}{0ex}}\frac{{I}_{\mathit{\text{ph}}}}{2}\phantom{\rule{0.1em}{0ex}}dt={C}_{T}0.9{V}_{\mathit{\text{DD}}}\phantom{\rule{0.2em}{0ex}},\hfill \\ \tau \hfill & =\frac{1.8{C}_{T}{V}_{\mathit{\text{DD}}}}{{I}_{\mathit{\text{ph}}}}\phantom{\rule{0.2em}{0ex}},\hfill \end{array}$$
(4)
$${\Phi}_{\mathit{\text{ph}}}=\frac{{I}_{\mathit{\text{pH}}}}{{R}_{r}}=\frac{1.8\phantom{\rule{0.1em}{0ex}}({C}_{G}\phantom{\rule{0.2em}{0ex}}+\phantom{\rule{0.2em}{0ex}}{C}_{D})\phantom{\rule{0.1em}{0ex}}{V}_{\mathit{\text{DD}}}2{f}_{c}}{{R}_{r}}\phantom{\rule{0.2em}{0ex}}.$$
(5)
$${C}_{D}=\frac{{\u220a}_{o}{\u220a}_{r}{A}_{D}}{d}\phantom{\rule{0.2em}{0ex}},$$