Abstract

The alignment and chromatic sensitivity of holographic optical elements for use in optical interconnect systems are quantified. The effects of these image degrading parameters are related to the frequency and power requirements for CMOS compatible detectors in an optical interconnect system. Techniques for reducing the magnitude of these problems with substrate-mode holograms are described, and experimental results demonstrating these designs are presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
    [Crossref]
  2. B. D. Clymer, J. W. Goodman, “Optical Clock Distribution to Silicon Chips,” Opt. Eng. 25, 1103–1108 (1986).
    [Crossref]
  3. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [Crossref] [PubMed]
  4. L. Bergman et al., “Applications and Design Considerations for Optical Interconnects in VLSI,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 117–126 (1986).
  5. J. B. McManus, R. S. Putnam, H. J. Caulfield, “Switched Holograms for Reconfigurable Optical Interconnection: Demonstration of a Prototype Device,” Appl. Opt. 27, 4244–4249 (1988).
    [Crossref] [PubMed]
  6. E. Bradley, P. K. L. Yu, “Laser Diode Requirements and Limitations for VLSI Holographic Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 835, 298–308 (1988).
  7. H. W. Holloway, R. A. Ferrante, “Computer Analysis of Holographic Systems by Means of Vector Ray Tracing,” Appl. Opt. 20, 2081–2089 (1981).
    [Crossref] [PubMed]
  8. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
    [Crossref] [PubMed]

1988 (3)

1987 (1)

1986 (2)

L. Bergman et al., “Applications and Design Considerations for Optical Interconnects in VLSI,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 117–126 (1986).

B. D. Clymer, J. W. Goodman, “Optical Clock Distribution to Silicon Chips,” Opt. Eng. 25, 1103–1108 (1986).
[Crossref]

1984 (1)

J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[Crossref]

1981 (1)

Athale, R.

J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[Crossref]

Bergman, L.

L. Bergman et al., “Applications and Design Considerations for Optical Interconnects in VLSI,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 117–126 (1986).

Bradley, E.

E. Bradley, P. K. L. Yu, “Laser Diode Requirements and Limitations for VLSI Holographic Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 835, 298–308 (1988).

Caulfield, H. J.

Clymer, B. D.

B. D. Clymer, J. W. Goodman, “Optical Clock Distribution to Silicon Chips,” Opt. Eng. 25, 1103–1108 (1986).
[Crossref]

Esener, S. C.

Feldman, M. R.

Ferrante, R. A.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[Crossref] [PubMed]

B. D. Clymer, J. W. Goodman, “Optical Clock Distribution to Silicon Chips,” Opt. Eng. 25, 1103–1108 (1986).
[Crossref]

J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[Crossref]

Guest, C. C.

Hesselink, L.

Holloway, H. W.

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[Crossref]

Lee, S. H.

Loenberger, F.

J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[Crossref]

McManus, J. B.

Putnam, R. S.

Yu, P. K. L.

E. Bradley, P. K. L. Yu, “Laser Diode Requirements and Limitations for VLSI Holographic Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 835, 298–308 (1988).

Appl. Opt. (4)

Opt. Eng. (1)

B. D. Clymer, J. W. Goodman, “Optical Clock Distribution to Silicon Chips,” Opt. Eng. 25, 1103–1108 (1986).
[Crossref]

Proc. IEEE (1)

J. W. Goodman, F. Loenberger, S. Y. Kung, R. Athale, “Optical Interconnects for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

L. Bergman et al., “Applications and Design Considerations for Optical Interconnects in VLSI,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 117–126 (1986).

E. Bradley, P. K. L. Yu, “Laser Diode Requirements and Limitations for VLSI Holographic Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 835, 298–308 (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic in-line Fourier transform hologram used for alignment analysis. αi is the misalignment angle and Zi the hologram–substrate separation.

Fig. 2
Fig. 2

Calculated change in point images formed by an in-line HOE with hologram-substrate separations Zi of 1.0 and 0.5 cm: (a) lateral shift; (b) aberrations; and (c) combined image extent due to lateral shift and aberrations.

Fig. 3
Fig. 3

Image extent as a function of wavelength for holograms formed at 780 nm with Zi = 1.0 and 0.5 cm. The collimated reference beam is 25° to the hologram normal.

Fig. 4
Fig. 4

Spot diagram for images formed by the hologram: (a) constructed at 780 nm with Zi = 0.5 cm and (b) reconstructed at 775 and 785 nm.

Fig. 5
Fig. 5

(a) Detector and CMOS inverter circuit; (b) Equivalent circuit showing division of photogenerated current between the load and total capacitance CT.

Fig. 6
Fig. 6

Optical power required to charge different diameter detectors at different frequencies. Also shown is the power required to drive a 10-fF gate.

Fig. 7
Fig. 7

(a) Grating pair for correcting chromatic aberrations. (b) Calculated spot diagram for grating pair designed at 780 nm and reconstructed at 785 and 775 nm. F/1 element with 1.0-cm focal length. Note that the spot diagrams for the two wavelengths overlap as a result of the compensation.

Fig. 8
Fig. 8

(a) Image formed by a single focusing HOE illuminated with a laser diode. Temperature change of the laser induces mode hopping and a wavelength change of ∼2.1 nm. Image shift due to this change is 280 μm. (b) Double grating reconstruction when the laser diode temperature is changed over a larger range than in (a). No lateral shift results.

Fig. 9
Fig. 9

Substrate-mode hologram with a grating for coupling light into a TIR guided beam, and an embedded focusing element for coupling light out of the substrate.

Fig. 10
Fig. 10

Reconstructed image from a substrate-mode hologram which splits the beam into four orthogonal directions and is then coupled out of the guide: (a) construction geometry and (b) reconstructed image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

sin α i λ r sin α r λ r = 1 Λ ,
sin α i λ r sin α r λ r = sin α o λ c sin α c λ c ,
Q = 0 τ I ph 2 d t = C T 0.9 V DD , τ = 1.8 C T V DD I ph ,
Φ ph = I pH R r = 1.8 ( C G + C D ) V DD 2 f c R r .
C D = o r A D d ,

Metrics