Abstract

The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).
  2. H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-Data-Processing Properties of a Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 10, 635–637 (1985).
    [CrossRef] [PubMed]
  3. D. A. Gregory, “Real-Time Pattern Recognition Using a Modified Liquid Crystal Television in a Coherent Optical Correlator,” Appl. Opt. 25, 467–469 (1986).
    [CrossRef] [PubMed]
  4. M. Young, “Low-Cost LCD Video Display for Optical Processing,” Appl. Opt. 25, 1024–1026 (1986).
    [CrossRef] [PubMed]
  5. A. M. Tai, “Low-Cost LCD Spatial Light Modulator with High Optical Quality,” Appl. Opt. 25, 1380–1382 (1986).
    [CrossRef]
  6. D. Casasent, S.-F. Xia, “Phase Correction of Light Modulators,” Opt. Lett. 11, 398–400 (1986).
    [CrossRef] [PubMed]
  7. J. Davis, R. A. Lilly, K. D. Krenz, H. K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245 (1986).
  8. H. K. Liu, S. Y. Kung, J. Davis, “Real-Time Optical Associative Retrieval Technique,” Opt. Eng. 25, 853 (1986).
    [CrossRef]
  9. F. T. S. Yu, J. Jutamulia, X. L. Huang, “Experimental Application of Low-Cost Liquid Crystal TV to White-Light Optical Signal Processing,” Appl. Opt. 25, 3324–3326 (1986).
    [CrossRef] [PubMed]
  10. F. Mok, J. Diep, H. K. Liu, D. Psaltis, “Real-Time Computer-Generated Hologram by Means of Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 11, 748–750 (1986).
    [CrossRef] [PubMed]
  11. F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gregory, “Adaptive Real-Time Pattern Recognition Using a Liquid Crystal TV Based Joint Transform Correlator,” Appl. Opt. 26, 1370–1372 (1987).
    [CrossRef] [PubMed]
  12. F. T. S. Yu, S. Jutamulia, D. A. Gregory, “Real-Time Liquid Crystal TV XOR- and XNOR-gate Binary Image Subtraction Technique,” Appl. Opt. 26, 2738–2742 (1987).
    [CrossRef] [PubMed]
  13. K. D. Hughes, S. K. Rogers, J. P. Mills, M. Kabrisky, “Optical Preprocessing Using Liquid Crystal Televisions,” Appl. Opt. 26, 1042–1044 (1987).
    [CrossRef] [PubMed]
  14. T.-H. Chao, H. K. Liu, “Real-Time Optical Holographic Tracking of Multiple Objects,” Appl. Opt. 28, 226–231 (1989).
    [CrossRef] [PubMed]
  15. J. L. Ferguson, “Liquid Crystal,” Sci. Am. 211, 77 (1964).
  16. W. E. Haas, “Liquid Crystal Display Research: The First Fifteen Years,” Mol. Cryst. Liq. Cryst. 94, 1 (1983).
    [CrossRef]
  17. M. Schadt, W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18, 127 (1971).
    [CrossRef]
  18. S. T. Wu, U. Efron, L. D. Hess, “Optical Rotary Power of 90 Degree Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 44, 842 (1984).
    [CrossRef]
  19. C. H. Gooch, H. A. Tarry, “The Optical Properties of Twisted Nematic Liquid Crystal Structures with Twist Angle <90°,” J. Phys. D 8, 1575 (1975).
    [CrossRef]
  20. A. Mawatari, “Application to the Pocket Color T. V.–TN Mode,” Erekutoronikusu (Electron. Mag.) 30, 44 (1985).
  21. P. Alt, P. Pleshko, “Scanning Limitations of Liquid-Crystal Displays,” IEEE Trans. Electron Devices ED-21, 146 (1974).
    [CrossRef]
  22. S. Morozumi, “Application to the Pocket Color T.V.–TFT Array,” Erekutoronikusu (Electron. Mag.) 30, 39 (1985).

1989 (1)

1987 (3)

1986 (8)

1985 (4)

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).

H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-Data-Processing Properties of a Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 10, 635–637 (1985).
[CrossRef] [PubMed]

A. Mawatari, “Application to the Pocket Color T. V.–TN Mode,” Erekutoronikusu (Electron. Mag.) 30, 44 (1985).

S. Morozumi, “Application to the Pocket Color T.V.–TFT Array,” Erekutoronikusu (Electron. Mag.) 30, 39 (1985).

1984 (1)

S. T. Wu, U. Efron, L. D. Hess, “Optical Rotary Power of 90 Degree Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 44, 842 (1984).
[CrossRef]

1983 (1)

W. E. Haas, “Liquid Crystal Display Research: The First Fifteen Years,” Mol. Cryst. Liq. Cryst. 94, 1 (1983).
[CrossRef]

1975 (1)

C. H. Gooch, H. A. Tarry, “The Optical Properties of Twisted Nematic Liquid Crystal Structures with Twist Angle <90°,” J. Phys. D 8, 1575 (1975).
[CrossRef]

1974 (1)

P. Alt, P. Pleshko, “Scanning Limitations of Liquid-Crystal Displays,” IEEE Trans. Electron Devices ED-21, 146 (1974).
[CrossRef]

1971 (1)

M. Schadt, W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

1964 (1)

J. L. Ferguson, “Liquid Crystal,” Sci. Am. 211, 77 (1964).

Alt, P.

P. Alt, P. Pleshko, “Scanning Limitations of Liquid-Crystal Displays,” IEEE Trans. Electron Devices ED-21, 146 (1974).
[CrossRef]

Casasent, D.

Chao, T.-H.

Davis, J.

J. Davis, R. A. Lilly, K. D. Krenz, H. K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245 (1986).

H. K. Liu, S. Y. Kung, J. Davis, “Real-Time Optical Associative Retrieval Technique,” Opt. Eng. 25, 853 (1986).
[CrossRef]

Davis, J. A.

Diep, J.

Efron, U.

S. T. Wu, U. Efron, L. D. Hess, “Optical Rotary Power of 90 Degree Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 44, 842 (1984).
[CrossRef]

Ferguson, J. L.

J. L. Ferguson, “Liquid Crystal,” Sci. Am. 211, 77 (1964).

Fisher, A. D.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).

Gooch, C. H.

C. H. Gooch, H. A. Tarry, “The Optical Properties of Twisted Nematic Liquid Crystal Structures with Twist Angle <90°,” J. Phys. D 8, 1575 (1975).
[CrossRef]

Gregory, D. A.

Haas, W. E.

W. E. Haas, “Liquid Crystal Display Research: The First Fifteen Years,” Mol. Cryst. Liq. Cryst. 94, 1 (1983).
[CrossRef]

Helfrich, W.

M. Schadt, W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

Hess, L. D.

S. T. Wu, U. Efron, L. D. Hess, “Optical Rotary Power of 90 Degree Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 44, 842 (1984).
[CrossRef]

Huang, X. L.

Hughes, K. D.

Jutamulia, J.

Jutamulia, S.

Kabrisky, M.

Krenz, K. D.

J. Davis, R. A. Lilly, K. D. Krenz, H. K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245 (1986).

Kung, S. Y.

H. K. Liu, S. Y. Kung, J. Davis, “Real-Time Optical Associative Retrieval Technique,” Opt. Eng. 25, 853 (1986).
[CrossRef]

Lee, J. N.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).

Lilly, R. A.

J. Davis, R. A. Lilly, K. D. Krenz, H. K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245 (1986).

H. K. Liu, J. A. Davis, R. A. Lilly, “Optical-Data-Processing Properties of a Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 10, 635–637 (1985).
[CrossRef] [PubMed]

Lin, T. W.

Liu, H. K.

Mawatari, A.

A. Mawatari, “Application to the Pocket Color T. V.–TN Mode,” Erekutoronikusu (Electron. Mag.) 30, 44 (1985).

McEwan, J. A.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).

Mills, J. P.

Mok, F.

Morozumi, S.

S. Morozumi, “Application to the Pocket Color T.V.–TFT Array,” Erekutoronikusu (Electron. Mag.) 30, 39 (1985).

Pleshko, P.

P. Alt, P. Pleshko, “Scanning Limitations of Liquid-Crystal Displays,” IEEE Trans. Electron Devices ED-21, 146 (1974).
[CrossRef]

Psaltis, D.

Rogers, S. K.

Rolsma, P. B.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).

Schadt, M.

M. Schadt, W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

Tai, A. M.

Tarry, H. A.

C. H. Gooch, H. A. Tarry, “The Optical Properties of Twisted Nematic Liquid Crystal Structures with Twist Angle <90°,” J. Phys. D 8, 1575 (1975).
[CrossRef]

Wu, S. T.

S. T. Wu, U. Efron, L. D. Hess, “Optical Rotary Power of 90 Degree Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 44, 842 (1984).
[CrossRef]

Xia, S.-F.

Young, M.

Yu, F. T. S.

Appl. Opt. (8)

Appl. Phys. Lett. (2)

M. Schadt, W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18, 127 (1971).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Optical Rotary Power of 90 Degree Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 44, 842 (1984).
[CrossRef]

Erekutoronikusu (Electron. Mag.) (2)

A. Mawatari, “Application to the Pocket Color T. V.–TN Mode,” Erekutoronikusu (Electron. Mag.) 30, 44 (1985).

S. Morozumi, “Application to the Pocket Color T.V.–TFT Array,” Erekutoronikusu (Electron. Mag.) 30, 39 (1985).

IEEE Trans. Electron Devices (1)

P. Alt, P. Pleshko, “Scanning Limitations of Liquid-Crystal Displays,” IEEE Trans. Electron Devices ED-21, 146 (1974).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, “Optical-Processing Characteristics of a Low-Cost Liquid Crystal Display Device,” J. Opt. Soc. Am. A 2(13), P 8 (1985).

J. Phys. D (1)

C. H. Gooch, H. A. Tarry, “The Optical Properties of Twisted Nematic Liquid Crystal Structures with Twist Angle <90°,” J. Phys. D 8, 1575 (1975).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

W. E. Haas, “Liquid Crystal Display Research: The First Fifteen Years,” Mol. Cryst. Liq. Cryst. 94, 1 (1983).
[CrossRef]

Opt. Eng. (1)

H. K. Liu, S. Y. Kung, J. Davis, “Real-Time Optical Associative Retrieval Technique,” Opt. Eng. 25, 853 (1986).
[CrossRef]

Opt. Lett. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Davis, R. A. Lilly, K. D. Krenz, H. K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245 (1986).

Sci. Am. (1)

J. L. Ferguson, “Liquid Crystal,” Sci. Am. 211, 77 (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Structure of a liquid crystal cell.

Fig. 2
Fig. 2

Two cases of the light transmission property of the LC cell: (a) two cells with parallel polarizers and with the applied field V ≠ 0 (left cell) and V = 0 (right cell); (b) two cells with crossed polarizers and with the applied field V ≠ 0 (left cell) and V = 0 (right cell).

Fig. 3
Fig. 3

Angle of rotation of polarization vs the liquid crystal twist angle for different values of C = πdΔn/λ.

Fig. 4
Fig. 4

Pixel transmission variations of the LCTV under various bias conditions.

Fig. 5
Fig. 5

Spatial frequency doubling effect of the grid patterns.

Fig. 6
Fig. 6

Applied voltage waveforms and brightness of the liquid crystal cells. Sample of a sixteen-level signal: (a) driving voltage waveforms; (b) brightness vs applied voltage.

Fig. 7
Fig. 7

Active matrix addressing method with one thin film transistor in each pixel.

Fig. 8
Fig. 8

Schematic diagram of the system setup for the SLM measurement of the LCTV.

Fig. 9
Fig. 9

Rotation of angle of polarization as a function of the bias voltage when the input light level is high (triangles) and low (circles) (Citizen LCTV).

Fig. 10
Fig. 10

Transmittance vs bias voltage when the input light level is high (triangles) and low (circles) (Citizen LCTV).

Fig. 11
Fig. 11

Measured contrast vs bias voltage of two Radio Shack LCTV SLMs: A, external polarizers; B, builtin polarizers.

Fig. 12
Fig. 12

Measured contrast vs bias voltage of the Epson LCTV SLM with external polarizers.

Fig. 13
Fig. 13

Measured contrast vs bias voltage of the Citizen LCTV SLM with external polarizers.

Fig. 14
Fig. 14

Fourier spectra of the LCTV SLM screen: (a) Citizen LCTV; (b) Radio Shack LCTV.

Fig. 15
Fig. 15

Transmittance as a function of bias of a Citizen LCTV SLM for high light level input (triangles) and low light level input (circles).

Tables (2)

Tables Icon

Table I Formula Relating Effective Driving Voltages and Maximum Number of Electrodes in the Screen N

Tables Icon

Table II Comparison of Three LCTV SLMs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E th = ( π 2 / 2 z ) ( k / Δ ) 1 / 2 ,
I ( 0 ° ) = 0.5 I 0 T p T c T a cos 2 θ ,
I ( 90 ° ) = 0.5 I 0 T p T c T a sin 2 θ ,
T ( 0 ° ) = ( 1 + u 2 ) 1 sin 2 [ Φ ( 1 + u 2 ) 1 / 2 ] ,
T ( 90 ° ) = 1 ( 1 + u 2 ) 1 sin 2 [ Φ ( 1 + u 2 ) 1 / 2 ] ,
V h = ( V 0 2 + ( V 0 / a ) 2 ( N 1 ) N = V 0 a a 2 + N 1 N
V L = ( 1 2 / a ) 2 V 0 2 + ( V 0 / a ) 2 ( N 1 ) N = V 0 a ( a 2 ) 2 + N 1 N
a = V h V L = a 2 + N 1 ( a 2 ) 2 + N 1
a MAX = N + 1 N 1 at a = N + 1

Metrics