Abstract

We correct an error in a widely used air mass table by recalculating the values on the basis of the ISO Standard Atmosphere (1972) and revise its approximation formula.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kasten, “A New Table and Approximation Formula for the Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
    [CrossRef]
  2. R. A. Minzer, K. S. W. Champion, H. L. Pond, The ARDC Model Atmosphere, 1959, Air Force Surveys in Geophysics 115 (AFCRL, 1959).
  3. F. Link, L. Neuzil, Tables of Light Trajectories in the Terrestrial Atmosphere (Hermann, Paris, 1969).
  4. D. E. Snider, A. Goldman, Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy, Ballistic Research Laboratories, Report 1790 (Ballistic Research Laboratories, June1975).
  5. Y. M. Treve, “New Values of the Optical Air Mass and the Refraction and Comparison with Previous Tables,” in Proceedings, Second Tropospheric Refraction Effects Technical Review Meeting, Technical Documentary Rep. ESD-TDR-64-103, May1964 (National Technical Information Service Order AD-442626), pp. 5-391.
  6. International Organization for Standardization, Standard Atmosphere, International Standard ISO 2533 (1972).
  7. S. L. Valley, Handbook of Geophysics and Space Physics (AFCRL, 1965), pp. 2–3.
  8. W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).
  9. A. T. Young, “Observational Technique and Data Reduction,” in Methods of Experimental Physics (Vol. 12, Astrophysics; Part A: Optical and Infrared), N. Carleton, Ed. (Academic, New York, 1974), p. 150.

1965 (1)

F. Kasten, “A New Table and Approximation Formula for the Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
[CrossRef]

Champion, K. S. W.

R. A. Minzer, K. S. W. Champion, H. L. Pond, The ARDC Model Atmosphere, 1959, Air Force Surveys in Geophysics 115 (AFCRL, 1959).

Fitzpatrick, M. J.

W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).

Goldman, A.

D. E. Snider, A. Goldman, Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy, Ballistic Research Laboratories, Report 1790 (Ballistic Research Laboratories, June1975).

Jefferys, W. H.

W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).

Kasten, F.

F. Kasten, “A New Table and Approximation Formula for the Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
[CrossRef]

Link, F.

F. Link, L. Neuzil, Tables of Light Trajectories in the Terrestrial Atmosphere (Hermann, Paris, 1969).

McArthur, B. E.

W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).

McCartney, J. E.

W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).

Minzer, R. A.

R. A. Minzer, K. S. W. Champion, H. L. Pond, The ARDC Model Atmosphere, 1959, Air Force Surveys in Geophysics 115 (AFCRL, 1959).

Neuzil, L.

F. Link, L. Neuzil, Tables of Light Trajectories in the Terrestrial Atmosphere (Hermann, Paris, 1969).

Pond, H. L.

R. A. Minzer, K. S. W. Champion, H. L. Pond, The ARDC Model Atmosphere, 1959, Air Force Surveys in Geophysics 115 (AFCRL, 1959).

Snider, D. E.

D. E. Snider, A. Goldman, Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy, Ballistic Research Laboratories, Report 1790 (Ballistic Research Laboratories, June1975).

Treve, Y. M.

Y. M. Treve, “New Values of the Optical Air Mass and the Refraction and Comparison with Previous Tables,” in Proceedings, Second Tropospheric Refraction Effects Technical Review Meeting, Technical Documentary Rep. ESD-TDR-64-103, May1964 (National Technical Information Service Order AD-442626), pp. 5-391.

Valley, S. L.

S. L. Valley, Handbook of Geophysics and Space Physics (AFCRL, 1965), pp. 2–3.

Young, A. T.

A. T. Young, “Observational Technique and Data Reduction,” in Methods of Experimental Physics (Vol. 12, Astrophysics; Part A: Optical and Infrared), N. Carleton, Ed. (Academic, New York, 1974), p. 150.

Arch. Meteorol. Geophys. Bioklimatol. Ser. B (1)

F. Kasten, “A New Table and Approximation Formula for the Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
[CrossRef]

Other (8)

R. A. Minzer, K. S. W. Champion, H. L. Pond, The ARDC Model Atmosphere, 1959, Air Force Surveys in Geophysics 115 (AFCRL, 1959).

F. Link, L. Neuzil, Tables of Light Trajectories in the Terrestrial Atmosphere (Hermann, Paris, 1969).

D. E. Snider, A. Goldman, Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy, Ballistic Research Laboratories, Report 1790 (Ballistic Research Laboratories, June1975).

Y. M. Treve, “New Values of the Optical Air Mass and the Refraction and Comparison with Previous Tables,” in Proceedings, Second Tropospheric Refraction Effects Technical Review Meeting, Technical Documentary Rep. ESD-TDR-64-103, May1964 (National Technical Information Service Order AD-442626), pp. 5-391.

International Organization for Standardization, Standard Atmosphere, International Standard ISO 2533 (1972).

S. L. Valley, Handbook of Geophysics and Space Physics (AFCRL, 1965), pp. 2–3.

W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).

A. T. Young, “Observational Technique and Data Reduction,” in Methods of Experimental Physics (Vol. 12, Astrophysics; Part A: Optical and Infrared), N. Carleton, Ed. (Academic, New York, 1974), p. 150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table I Step Widths Δγ of Elevation γ Used in Computing the Optical Air Masses

Tables Icon

Table II Absolute Optical Air Mass mabs(γ) in kg/m2, Relative Optical Air Mass m(γ) = mabs(γ)/mabs(90°), and Relative Error r(γ), Eq. (4), as Functions of Elevation Angle γ in Degrees Computed from the ISO Standard Atmosphere

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m ( γ ) = m abs ( γ ) / m abs ( 90 ° ) ,
m abs ( γ ) = ρ 0 0 ( ρ / ρ 0 ) { 1 [ 1 + 2 δ 0 ( 1 ρ / ρ 0 ) ] × [ cos γ / ( 1 + h / R ) ] 2 } 1 / 2 d h ,
f ( γ ) = [ sin γ + a ( γ + b ) c ] 1 ,
r ( γ ) = [ f ( γ ) m ( γ ) ] / m ( γ )

Metrics