Abstract

We continue examination of the photon correlation properties of silicon avalanche photodiodes operated in the single-photon counting mode by extending their operation from that of passive [ Appl. Opt. 25, 4122– 4126 ( 1986)] and active [ Appl. Opt. 26, 2383– 2389 ( 1987)] quenching to the sub-Geiger mode, with potential for high quantum efficiency and very low afterpulsing.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Z. Cummins, E. R. Pike, Eds., Photon Correlation and Light Beating Spectroscopy (Plenum, London, 1974).
  2. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements. 1: Passive Quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef] [PubMed]
  3. R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements. 2: Active Quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [CrossRef] [PubMed]
  4. J. G. Rarity, K. D. Ridley, P. R. Tapster, “Absolute Measurement of Detector Quantum Efficiency Using Parametric Downconversion,” Appl. Opt. 26, 4616–4619 (1987);J. G. Rarity, P. R. Tapster, E. Jakeman, “Observation of Sub-Poissonian Light in Parametric Downconversion,” Opt. Commun. 62, 201– 206 (1987);J. G. Rarity, P. R. Tapster, “Fourth-Order Interference Effects in Parametric Downconversion,” J. Opt. Soc. Am. B 6, 1221–1226 (1989).
    [CrossRef] [PubMed]
  5. R. G. W. Brown, J. G. Burnett, K. Chow, J. G. Rarity, “Miniature Light Scattering Systems for On-Line Process Particle Size and Velocity Measurement,” Proc. Soc. Photo-Opt. Instrum. Eng. 1012, 144–149 (1988).
  6. R. G. W. Brown, “Miniature Instrumentation for Laser Light Scattering Experiments,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).
  7. R. J. McIntyre, “Recent Developments in Silicon Avalanche Photodiodes,” Measurement 3, 146–152 (1985).
    [CrossRef]
  8. A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).
  9. J. S. Morgan, “Speckle Imaging with the MAMA Detector,” ESO Proc. 29, 381–391 (1988);Instrumentation for Ground-Based Optical Astronomy: Present and Future (Springer-Verlag, New York), in press.
  10. M. D. Petroff, M. G. Stapelbroek, W. A. Kleihans, “Detection of Individual 0.4–28 μm Wavelength Photons via ImpurityImpact Ionization in a Solid-State Photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
    [CrossRef]
  11. P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Rev. 35, 234–278 (1974).
  12. R. H. Haitz, “Variation of Junction Breakdown Voltage by Charge Trapping,” Phys. Rev. 138, A260–A267 (1965).
    [CrossRef]
  13. M. Daniels, “The Optimization and Characterization of a Single-Element Avalanche Photodiode for Sub-Geiger Mode Single Photon Detection,” M.Sc. Thesis, Heriot-Watt U. (1988).
  14. R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
    [CrossRef]
  15. K. A. O'Donnell, “Correction of Dead-Time Effects in Photoelectric-Counting Distributions,” J. Opt. Soc. Am. A 3, 113–115 (1986);K. Schaetzel, “Dead-Time Correction of Photon Correlation Functions,” Appl. Phys. B 41, 95–102 (1986).
    [CrossRef]
  16. R. G. W. Brown, R. S. Grant, “Photon Statistical Properties of Visible Laser Diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
    [CrossRef]
  17. P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206–1212 (1984).
    [CrossRef]
  18. M. Trakalo, P. P. Webb, P. Poirier, R. J. McIntyre, “Avalanche Photodiode Thirty-Two Element Linear Array with Minimal Dead Space,” Appl. Opt. 26, 3594–3599 (1987).
    [CrossRef] [PubMed]

1988 (2)

R. G. W. Brown, J. G. Burnett, K. Chow, J. G. Rarity, “Miniature Light Scattering Systems for On-Line Process Particle Size and Velocity Measurement,” Proc. Soc. Photo-Opt. Instrum. Eng. 1012, 144–149 (1988).

J. S. Morgan, “Speckle Imaging with the MAMA Detector,” ESO Proc. 29, 381–391 (1988);Instrumentation for Ground-Based Optical Astronomy: Present and Future (Springer-Verlag, New York), in press.

1987 (5)

1986 (2)

1985 (1)

R. J. McIntyre, “Recent Developments in Silicon Avalanche Photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

1984 (1)

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206–1212 (1984).
[CrossRef]

1974 (1)

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Rev. 35, 234–278 (1974).

1969 (1)

R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
[CrossRef]

1965 (1)

R. H. Haitz, “Variation of Junction Breakdown Voltage by Charge Trapping,” Phys. Rev. 138, A260–A267 (1965).
[CrossRef]

Alley, C. O.

R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
[CrossRef]

Brown, R. G. W.

R. G. W. Brown, J. G. Burnett, K. Chow, J. G. Rarity, “Miniature Light Scattering Systems for On-Line Process Particle Size and Velocity Measurement,” Proc. Soc. Photo-Opt. Instrum. Eng. 1012, 144–149 (1988).

R. G. W. Brown, R. S. Grant, “Photon Statistical Properties of Visible Laser Diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
[CrossRef]

R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements. 2: Active Quenching,” Appl. Opt. 26, 2383–2389 (1987).
[CrossRef] [PubMed]

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements. 1: Passive Quenching,” Appl. Opt. 25, 4122–4126 (1986).
[CrossRef] [PubMed]

R. G. W. Brown, “Miniature Instrumentation for Laser Light Scattering Experiments,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

Burnett, J. G.

R. G. W. Brown, J. G. Burnett, K. Chow, J. G. Rarity, “Miniature Light Scattering Systems for On-Line Process Particle Size and Velocity Measurement,” Proc. Soc. Photo-Opt. Instrum. Eng. 1012, 144–149 (1988).

Chang, R. F.

R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
[CrossRef]

Chow, K.

R. G. W. Brown, J. G. Burnett, K. Chow, J. G. Rarity, “Miniature Light Scattering Systems for On-Line Process Particle Size and Velocity Measurement,” Proc. Soc. Photo-Opt. Instrum. Eng. 1012, 144–149 (1988).

Conradi, J.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Rev. 35, 234–278 (1974).

Daniels, M.

M. Daniels, “The Optimization and Characterization of a Single-Element Avalanche Photodiode for Sub-Geiger Mode Single Photon Detection,” M.Sc. Thesis, Heriot-Watt U. (1988).

Detenbeck, R. W.

R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
[CrossRef]

Grant, R. S.

R. G. W. Brown, R. S. Grant, “Photon Statistical Properties of Visible Laser Diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
[CrossRef]

Haitz, R. H.

R. H. Haitz, “Variation of Junction Breakdown Voltage by Charge Trapping,” Phys. Rev. 138, A260–A267 (1965).
[CrossRef]

Jones, R.

Kleihans, W. A.

M. D. Petroff, M. G. Stapelbroek, W. A. Kleihans, “Detection of Individual 0.4–28 μm Wavelength Photons via ImpurityImpact Ionization in a Solid-State Photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Korenman, V.

R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
[CrossRef]

Lightstone, A. W.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

MacGregor, A. D.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

MacSween, D. E.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

McIntyre, R. J.

M. Trakalo, P. P. Webb, P. Poirier, R. J. McIntyre, “Avalanche Photodiode Thirty-Two Element Linear Array with Minimal Dead Space,” Appl. Opt. 26, 3594–3599 (1987).
[CrossRef] [PubMed]

R. J. McIntyre, “Recent Developments in Silicon Avalanche Photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206–1212 (1984).
[CrossRef]

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Rev. 35, 234–278 (1974).

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

Morgan, J. S.

J. S. Morgan, “Speckle Imaging with the MAMA Detector,” ESO Proc. 29, 381–391 (1988);Instrumentation for Ground-Based Optical Astronomy: Present and Future (Springer-Verlag, New York), in press.

O'Donnell, K. A.

Petroff, M. D.

M. D. Petroff, M. G. Stapelbroek, W. A. Kleihans, “Detection of Individual 0.4–28 μm Wavelength Photons via ImpurityImpact Ionization in a Solid-State Photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Poirier, P.

Rarity, J. G.

Ridley, K. D.

Stapelbroek, M. G.

M. D. Petroff, M. G. Stapelbroek, W. A. Kleihans, “Detection of Individual 0.4–28 μm Wavelength Photons via ImpurityImpact Ionization in a Solid-State Photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Tapster, P. R.

Trakalo, M.

Trottier, C.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

Webb, P. P.

M. Trakalo, P. P. Webb, P. Poirier, R. J. McIntyre, “Avalanche Photodiode Thirty-Two Element Linear Array with Minimal Dead Space,” Appl. Opt. 26, 3594–3599 (1987).
[CrossRef] [PubMed]

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206–1212 (1984).
[CrossRef]

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Rev. 35, 234–278 (1974).

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. D. Petroff, M. G. Stapelbroek, W. A. Kleihans, “Detection of Individual 0.4–28 μm Wavelength Photons via ImpurityImpact Ionization in a Solid-State Photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

ESO Proc. (1)

J. S. Morgan, “Speckle Imaging with the MAMA Detector,” ESO Proc. 29, 381–391 (1988);Instrumentation for Ground-Based Optical Astronomy: Present and Future (Springer-Verlag, New York), in press.

IEEE Trans. Electron Devices (1)

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206–1212 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Measurement (1)

R. J. McIntyre, “Recent Developments in Silicon Avalanche Photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

Phys. Rev. (2)

R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178, 612–621 (1969).
[CrossRef]

R. H. Haitz, “Variation of Junction Breakdown Voltage by Charge Trapping,” Phys. Rev. 138, A260–A267 (1965).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. G. W. Brown, J. G. Burnett, K. Chow, J. G. Rarity, “Miniature Light Scattering Systems for On-Line Process Particle Size and Velocity Measurement,” Proc. Soc. Photo-Opt. Instrum. Eng. 1012, 144–149 (1988).

RCA Rev. (1)

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Rev. 35, 234–278 (1974).

Rev. Sci. Instrum. (1)

R. G. W. Brown, R. S. Grant, “Photon Statistical Properties of Visible Laser Diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
[CrossRef]

Other (4)

M. Daniels, “The Optimization and Characterization of a Single-Element Avalanche Photodiode for Sub-Geiger Mode Single Photon Detection,” M.Sc. Thesis, Heriot-Watt U. (1988).

R. G. W. Brown, “Miniature Instrumentation for Laser Light Scattering Experiments,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon Counting Modules Using RCA Silicon Avalanche Photodiodes,” in Proceedings, NASA Laser Light Scattering Advanced Technology Development Workshop (NASA Lewis Research Center, Cleveland, OH, 1988).

H. Z. Cummins, E. R. Pike, Eds., Photon Correlation and Light Beating Spectroscopy (Plenum, London, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic arrangement of the sub-Geiger experiment circuitry.

Fig. 2
Fig. 2

Measured autocorrelation functions of a constant intensity Poisson source for a sample time of 10 μs and photon count rates per second as indicated.

Fig. 3
Fig. 3

Measured autocorrelation functions of a constant intensity Poisson source for a sample time of 100 μs and photon count rates per second as indicated.

Fig. 4
Fig. 4

Measured autocorrelation functions of a constant intensity Poisson source for a sample time of 1000 μs and photon count rates per second as indicated.

Tables (3)

Tables Icon

Table I Factorial Moments

Tables Icon

Table II Correlogram Analysis

Tables Icon

Table III Improved Long Time Correlogram Analysis

Metrics