Abstract

An AlGaAs laser diode (slave laser) has been frequency-locked to a Fabry-Perot interferometer which is locked to a diode laser (master laser) beam frequency-locked to the D2 line of a Cs atomic beam. Frequency-locking of the Fabry-Perot interferometer to the master laser beam frequency-locked to a resonance line of an atomic beam greatly improves its long-term frequency stability. Therefore, it substantially improves the slave laser diode frequency stability frequency-locked to it. The measured frequency stabilities show that the very high frequency stability of the D2 line of a Cs atomic beam has been transferred to the slave laser by this frequency-locking system within 1.6 × 10−11 (10 s). This system can be used for building a network of diode lasers with high frequency stability.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
    [Crossref]
  2. S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).
  3. H. Tsuchida, T. Tako, “Achievements of the Quantum Noise Limited Frequency Stability in AlGaAs Semiconductor Laser,” Jpn. J. Appl. Phys. 22, L496–498 (1983).
    [Crossref]
  4. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency Stabilization of Semiconductor Lasers by Resonant Optical Feedback,” Opt. Lett. 12, 876–878 (1987).
    [Crossref] [PubMed]
  5. Y. C. Chung, T. M. Shay, “450 Hz Relative Frequency Stability in an AlGaAs Diode Laser,” Electron. Lett. 23, 1044–1045 (1987).
    [Crossref]
  6. A. Sollberger, “Frequency Stabilization of Semiconductor Lasers,” Mitt. Acen (Switzerland) 40, 31–38 (1985) (in German).
  7. H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs DH Lasers,” Jpn. J. Appl. Phys. 20, L403–406 (1981).
    [Crossref]
  8. D. P. Wang, L. Z. Xie, Y. Q. Wang, “GaAlAs Laser Diode Frequency Locked at the D2 Line of Cs Atoms in an Atomic Beam,” Opt. Lett. 13, 820–822 (1988).
    [Crossref] [PubMed]

1988 (1)

1987 (2)

B. Dahmani, L. Hollberg, R. Drullinger, “Frequency Stabilization of Semiconductor Lasers by Resonant Optical Feedback,” Opt. Lett. 12, 876–878 (1987).
[Crossref] [PubMed]

Y. C. Chung, T. M. Shay, “450 Hz Relative Frequency Stability in an AlGaAs Diode Laser,” Electron. Lett. 23, 1044–1045 (1987).
[Crossref]

1985 (1)

A. Sollberger, “Frequency Stabilization of Semiconductor Lasers,” Mitt. Acen (Switzerland) 40, 31–38 (1985) (in German).

1983 (2)

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).

H. Tsuchida, T. Tako, “Achievements of the Quantum Noise Limited Frequency Stability in AlGaAs Semiconductor Laser,” Jpn. J. Appl. Phys. 22, L496–498 (1983).
[Crossref]

1981 (1)

H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs DH Lasers,” Jpn. J. Appl. Phys. 20, L403–406 (1981).
[Crossref]

1980 (1)

H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
[Crossref]

Chung, Y. C.

Y. C. Chung, T. M. Shay, “450 Hz Relative Frequency Stability in an AlGaAs Diode Laser,” Electron. Lett. 23, 1044–1045 (1987).
[Crossref]

Dahmani, B.

Drullinger, R.

Hollberg, L.

Ohtsu, M.

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).

H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs DH Lasers,” Jpn. J. Appl. Phys. 20, L403–406 (1981).
[Crossref]

H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
[Crossref]

Sanpei, S.

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).

H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
[Crossref]

Shay, T. M.

Y. C. Chung, T. M. Shay, “450 Hz Relative Frequency Stability in an AlGaAs Diode Laser,” Electron. Lett. 23, 1044–1045 (1987).
[Crossref]

Sollberger, A.

A. Sollberger, “Frequency Stabilization of Semiconductor Lasers,” Mitt. Acen (Switzerland) 40, 31–38 (1985) (in German).

Tako, T.

H. Tsuchida, T. Tako, “Achievements of the Quantum Noise Limited Frequency Stability in AlGaAs Semiconductor Laser,” Jpn. J. Appl. Phys. 22, L496–498 (1983).
[Crossref]

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).

H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs DH Lasers,” Jpn. J. Appl. Phys. 20, L403–406 (1981).
[Crossref]

H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
[Crossref]

Tsuchida, H.

H. Tsuchida, T. Tako, “Achievements of the Quantum Noise Limited Frequency Stability in AlGaAs Semiconductor Laser,” Jpn. J. Appl. Phys. 22, L496–498 (1983).
[Crossref]

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).

H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs DH Lasers,” Jpn. J. Appl. Phys. 20, L403–406 (1981).
[Crossref]

H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
[Crossref]

Wang, D. P.

Wang, Y. Q.

Xie, L. Z.

Appl. Phys. (1)

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback,” Appl. Phys. 22, L258–260 (1983).

Electron. Lett. (1)

Y. C. Chung, T. M. Shay, “450 Hz Relative Frequency Stability in an AlGaAs Diode Laser,” Electron. Lett. 23, 1044–1045 (1987).
[Crossref]

Jpn. J. Appl. Phys. (3)

H. Tsuchida, T. Tako, “Achievements of the Quantum Noise Limited Frequency Stability in AlGaAs Semiconductor Laser,” Jpn. J. Appl. Phys. 22, L496–498 (1983).
[Crossref]

H. Tsuchida, M. Ohtsu, T. Tako, “Frequency Stabilization of AlGaAs DH Lasers,” Jpn. J. Appl. Phys. 20, L403–406 (1981).
[Crossref]

H. Tsuchida, S. Sanpei, M. Ohtsu, T. Tako, “Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser,” Jpn. J. Appl. Phys. 19, L721–724 (1980).
[Crossref]

Mitt. Acen (Switzerland) (1)

A. Sollberger, “Frequency Stabilization of Semiconductor Lasers,” Mitt. Acen (Switzerland) 40, 31–38 (1985) (in German).

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for frequency stabilization of AlGaAs laser diodes by Fabry-Perot interferometer locked to a laser beam frequency-locked to the D2 line of a Cs atomic beam. A Cs oven and a detector DI are located inside the Cs-beam tube. LDm and LDs, laser diodes; T.C., temperature controllers; fmI and fmII, signal generators that provide 3.0- and 1.9-KHz sinusoidal wave modulation and reference signals, respectively; F-P, Fabry-Perot interferometer; PDI, PDII and PDIII, phase detectors; PIDI, PIDII and PIDIII, proportional amplifier-integrator-differentiator circuits; DI, DII, photodetectors.

Fig. 2
Fig. 2

Recorded frequency discrimination curves. (a),(b),(c), frequency discrimination curves of locking the laser diode LDm to the F = 4 − F′ = 5 transition of the Cs-D2 line in an atomic beam, frequency-locking the F-P cavity to the LDm laser beam, and locking the laser diode LDs to the F-P cavity, respectively.

Fig. 3
Fig. 3

Measured frequency stability. Curves σ1, σ2, σ3 correspond to the frequency stabilities of the master laser diode LDm, the Fabry-Perot interferometer F-P, and the slave laser diode LDs for the closed-loop condition respectively; σ1′, σ2′, σ3′ are their frequency stabilities for the free-running condition; and σ 2 T = σ 1 2 + σ 2 2 , σ 3 T = σ 1 2 + σ 2 2 + σ 3 2 .

Fig. 4
Fig. 4

Recorded frequency fluctuation curves. (a),(b),(c), the frequency fluctuations of the master laser diode LDm, the Fabry-Perot interferometer F-P and the slave laser LDs, respectively. Upper traces: free-running condition. Lower traces: frequency-locking condition.

Tables (1)

Tables Icon

Table I Frequency Stabilities σ1, σ2, and σ3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ 2 T = σ 1 2 + σ 2 2 σ 3 T = σ 1 2 + σ 2 2 + σ 3 2 ;

Metrics