Abstract

The experimental performance of a two-element phased array of multiline cw HF chemical lasers in the master oscillator with power amplifier (MOPA) configuration has been measured. The mutual coherence of the two amplified beams was inferred from measurements of the visibility of interference fringes obtained when the beams were overlapped in the near field. When the optical path difference for the two beams was minimized, multiline visibilities of 0.90 ± 0.02 were measured. White light interferometry was used to equalize the optical path lengths. Spectral mismatch between the master oscillator output and the amplifier's preferred gain distribution affected neither the amplification factor nor the mutual coherence of the amplified beams. The effect of spatial coherence of the master oscillator beam on these near field measurements and the eventual requirement of far field measurements to precisely optimize path lengths are discussed. Spectra data, amplification factors, and mutual coherence measurements are shown, and the resulting phased array far field performance is presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Warren, “The Parallel Inernal-Master-Oscillator Power Amplifier for Phase Matching the Output Beams of Multiline Lasers,” TR 0078 (9990)-6, The Aerospace Corp., Los Angeles, CA 90009 (1978).
  2. C. P. Wang, “Master and Slave Oscillator Array System for Very Large Multiline Lasers,” Appl. Opt. 17, 83–86 (1978).
    [CrossRef] [PubMed]
  3. R. W. F. Gross, J. G. Coffer, R. A. Chodzko, E. B. Turner, “Interference Patterns Produced by a Mach Zehnder Interferometer and a Multiline HF Laser,” TR 0080 (5764)-2, The Aerospace Corp., Los Angeles, CA 90009 (1980).
  4. J. G. Coffer, J. M. Bernard, R. A. Chodzko, E. B. Turner, R. W. F. Gross, W. R. Warren, “Experiments with Active Phase Matching of Parallel-Amplified Multiline HF Laser Beams by a Phase-Locked Mach Zehnder Interferometer,” Appl. Opt. 22, 142–148 (1983).
    [CrossRef] [PubMed]
  5. C. P. Wang, “Frequency Stability of a cw HF Chemical Laser,” J. Appl. Phys. 47, 221–223 (1976).
    [CrossRef]
  6. D. J. Spencer, H. Mirels, D. A. Durran, “Performance of cw HF Chemical Laser with N2 or He Diluent,” J. Appl. Phys. 43, 1151–1157 (1972).
    [CrossRef]

1983

1978

1976

C. P. Wang, “Frequency Stability of a cw HF Chemical Laser,” J. Appl. Phys. 47, 221–223 (1976).
[CrossRef]

1972

D. J. Spencer, H. Mirels, D. A. Durran, “Performance of cw HF Chemical Laser with N2 or He Diluent,” J. Appl. Phys. 43, 1151–1157 (1972).
[CrossRef]

Bernard, J. M.

Chodzko, R. A.

J. G. Coffer, J. M. Bernard, R. A. Chodzko, E. B. Turner, R. W. F. Gross, W. R. Warren, “Experiments with Active Phase Matching of Parallel-Amplified Multiline HF Laser Beams by a Phase-Locked Mach Zehnder Interferometer,” Appl. Opt. 22, 142–148 (1983).
[CrossRef] [PubMed]

R. W. F. Gross, J. G. Coffer, R. A. Chodzko, E. B. Turner, “Interference Patterns Produced by a Mach Zehnder Interferometer and a Multiline HF Laser,” TR 0080 (5764)-2, The Aerospace Corp., Los Angeles, CA 90009 (1980).

Coffer, J. G.

J. G. Coffer, J. M. Bernard, R. A. Chodzko, E. B. Turner, R. W. F. Gross, W. R. Warren, “Experiments with Active Phase Matching of Parallel-Amplified Multiline HF Laser Beams by a Phase-Locked Mach Zehnder Interferometer,” Appl. Opt. 22, 142–148 (1983).
[CrossRef] [PubMed]

R. W. F. Gross, J. G. Coffer, R. A. Chodzko, E. B. Turner, “Interference Patterns Produced by a Mach Zehnder Interferometer and a Multiline HF Laser,” TR 0080 (5764)-2, The Aerospace Corp., Los Angeles, CA 90009 (1980).

Durran, D. A.

D. J. Spencer, H. Mirels, D. A. Durran, “Performance of cw HF Chemical Laser with N2 or He Diluent,” J. Appl. Phys. 43, 1151–1157 (1972).
[CrossRef]

Gross, R. W. F.

J. G. Coffer, J. M. Bernard, R. A. Chodzko, E. B. Turner, R. W. F. Gross, W. R. Warren, “Experiments with Active Phase Matching of Parallel-Amplified Multiline HF Laser Beams by a Phase-Locked Mach Zehnder Interferometer,” Appl. Opt. 22, 142–148 (1983).
[CrossRef] [PubMed]

R. W. F. Gross, J. G. Coffer, R. A. Chodzko, E. B. Turner, “Interference Patterns Produced by a Mach Zehnder Interferometer and a Multiline HF Laser,” TR 0080 (5764)-2, The Aerospace Corp., Los Angeles, CA 90009 (1980).

Mirels, H.

D. J. Spencer, H. Mirels, D. A. Durran, “Performance of cw HF Chemical Laser with N2 or He Diluent,” J. Appl. Phys. 43, 1151–1157 (1972).
[CrossRef]

Spencer, D. J.

D. J. Spencer, H. Mirels, D. A. Durran, “Performance of cw HF Chemical Laser with N2 or He Diluent,” J. Appl. Phys. 43, 1151–1157 (1972).
[CrossRef]

Turner, E. B.

J. G. Coffer, J. M. Bernard, R. A. Chodzko, E. B. Turner, R. W. F. Gross, W. R. Warren, “Experiments with Active Phase Matching of Parallel-Amplified Multiline HF Laser Beams by a Phase-Locked Mach Zehnder Interferometer,” Appl. Opt. 22, 142–148 (1983).
[CrossRef] [PubMed]

R. W. F. Gross, J. G. Coffer, R. A. Chodzko, E. B. Turner, “Interference Patterns Produced by a Mach Zehnder Interferometer and a Multiline HF Laser,” TR 0080 (5764)-2, The Aerospace Corp., Los Angeles, CA 90009 (1980).

Wang, C. P.

C. P. Wang, “Master and Slave Oscillator Array System for Very Large Multiline Lasers,” Appl. Opt. 17, 83–86 (1978).
[CrossRef] [PubMed]

C. P. Wang, “Frequency Stability of a cw HF Chemical Laser,” J. Appl. Phys. 47, 221–223 (1976).
[CrossRef]

Warren, W. R.

J. G. Coffer, J. M. Bernard, R. A. Chodzko, E. B. Turner, R. W. F. Gross, W. R. Warren, “Experiments with Active Phase Matching of Parallel-Amplified Multiline HF Laser Beams by a Phase-Locked Mach Zehnder Interferometer,” Appl. Opt. 22, 142–148 (1983).
[CrossRef] [PubMed]

W. R. Warren, “The Parallel Inernal-Master-Oscillator Power Amplifier for Phase Matching the Output Beams of Multiline Lasers,” TR 0078 (9990)-6, The Aerospace Corp., Los Angeles, CA 90009 (1978).

Appl. Opt.

J. Appl. Phys.

C. P. Wang, “Frequency Stability of a cw HF Chemical Laser,” J. Appl. Phys. 47, 221–223 (1976).
[CrossRef]

D. J. Spencer, H. Mirels, D. A. Durran, “Performance of cw HF Chemical Laser with N2 or He Diluent,” J. Appl. Phys. 43, 1151–1157 (1972).
[CrossRef]

Other

W. R. Warren, “The Parallel Inernal-Master-Oscillator Power Amplifier for Phase Matching the Output Beams of Multiline Lasers,” TR 0078 (9990)-6, The Aerospace Corp., Los Angeles, CA 90009 (1978).

R. W. F. Gross, J. G. Coffer, R. A. Chodzko, E. B. Turner, “Interference Patterns Produced by a Mach Zehnder Interferometer and a Multiline HF Laser,” TR 0080 (5764)-2, The Aerospace Corp., Los Angeles, CA 90009 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the master oscillator with power amplifier experimental configuration.

Fig. 2
Fig. 2

Schematic diagram of the phased array diagnostic system.

Fig. 3
Fig. 3

(a) Fringe intensity as a function of OPD for a Mach-Zehnder interferometer illuminated by a multiline HF laser. (b) Fringe intensity as a function of OPD for a Mach-Zehnder interferometer illuminated by a white light source.

Fig. 4
Fig. 4

Schematic diagram of a three-legged white light Michelson interferometer.

Fig. 5
Fig. 5

Michelson interferometer setup as used on our optical system.

Fig. 6
Fig. 6

Thermal image of the focal plane of the HF laser spectrum analyzer with the spectral lines identified.

Fig. 7
Fig. 7

(a) Horizontal scan of the near field multiline interference fringes for the master oscillator beams without amplification. (b) Horizontal scan of the near field multiline interference fringes for the amplified MOPA output beams.

Fig. 8
Fig. 8

Horizontal scan of the P2(6) component of the near field interference fringes with amplification.

Fig. 9
Fig. 9

Horizontal scans of the multiline far field spots with amplification when the beams are separated.

Fig. 10
Fig. 10

Horizontal scan of the multiline far field spot with amplification when the beams are overlapped and (a) when the OPD is one-half wavelength from zero and (b) when the OPD is within a twentieth-wavelength of zero.

Metrics