Abstract

Presented are the gain characteristics of an electron-beam pumped XeF gas mixture (neon diluent) while saturating with either one or two external laser beams whose wavelengths are various combinations of the XeF laser lines (i.e., 351.1, 351.2, and 353.2 nm). Individual saturating beam fluxes ranged from <1 to ≈6 MW/ cm2, with bandwidths of either 4 or 8 GHz. A third broadband UV dye laser probes the laser medium to measure the total XeF gain spectrum during saturation. The electron-beam deposition rate is either 270 or 380 kW/cm3 and the gas temperature is 400 K. The results indicate that rotational coupling within the XeF gain band for each of the laser lines is relatively fast and saturation appears fairly homogeneous. However, vibrational coupling between the laser lines appears to be nonuniform and not as strong. The saturation behavior is relatively insensitive to the saturation beam bandwidths investigated, indicating that efficient narrowband extraction within a gain band may be possible. Due to the weak vibrational coupling, efficient extraction from the XeF manifold probably requires extraction on at least two of the laser lines. Results with neon and argon diluent at 294 K are also presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Slatkine, I. J. Bigio, B. J. Feldman, R. A. Fisher, “Efficient Phase Conjugation of an Ultraviolet XeF Laser Beam by Stimulated Brillouin Scattering,” Opt. Lett. 7, 108–110 (1982).
    [CrossRef] [PubMed]
  2. I. V. Tomov, R. Redosejevs, D. C. D. McKen, “High-Efficiency Stimulated Brillouin Scattering of KrF Laser Radiation in SF6,” Opt. Lett. 9, 405–407 (1984).
    [CrossRef] [PubMed]
  3. J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
    [CrossRef]
  4. J. A. Blauer, T. T. Yang, C. E. Turner, D. A. Copeland, “Excimer Kinetics and Multiline Model for the Electron-Beam Pumped XeF(B–X) Laser,” Appl. Opt. 23, 4352–4367 (1984).
    [CrossRef] [PubMed]
  5. W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986).
    [CrossRef]
  6. J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981).
    [CrossRef]
  7. W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
    [CrossRef]
  8. W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.
  9. S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
    [CrossRef]
  10. L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
    [CrossRef]
  11. S. E. Moody, W. D. Kimura, “The Role of Atomic Absorption in Xenon Fluoride Lasers,” in Proceedings of the International Conference on Lasers '85, C. P. Wang, Ed. (STS Press, McLean, 1986), p. 423–428.
  12. C. A. Brau, in Excimer Lasers, C. K. Rhodes, Ed. (Springer-Verlag, Berlin, 1979), p. 88.
  13. A. L. Pindroh, Spectra Technology, Inc., private communication.
  14. R. L. Wilkins, “Theoretical Calculations of XeF Ground State Kinetics,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-39, (unpublished).
  15. S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980).
    [CrossRef]
  16. T. T. Yang, J. A. Blauer, C. E. Turner, G. A. Merry, “XeF Ground State Kinetics Analysis,” Appl. Opt. 26, 2533–2538 (1987).
    [CrossRef] [PubMed]
  17. J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).
  18. A. Mandl, L. Litzenberger, “XeF Laser at a High Electron Beam Pump Rate,” Appl. Phys. Lett. 51, 955–957 (1987).
    [CrossRef]
  19. L. F. Champagne, “Temperature-Dependent Absorption Processes in the XeF Laser,” Appl. Phys. Lett. 35, 516–519 (1979).
    [CrossRef]
  20. D. H. Burde et al., “Mechanism for Improved XeF Laser Performance at Elevated Temperatures,” Appl. Opt. 26, 2539–2543 (1987).
    [CrossRef] [PubMed]
  21. T. T. Yang et al., “Spectra of Electron-Beam Pumped XeF Lasers,” Appl. Opt. 27, 49–57 (1988).
    [CrossRef] [PubMed]
  22. P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
    [CrossRef]
  23. P. C. Tellinghuisen, J. Tellinghuisen, “B→X Transition in 136Xe19F,” Appl. Phys. Lett. 43, 898–900 (1983).
    [CrossRef]
  24. W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986).
    [CrossRef]
  25. L. M. Frantz, J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  26. W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), pp. 123–170.
  27. M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
    [CrossRef]

1988

1987

T. T. Yang, J. A. Blauer, C. E. Turner, G. A. Merry, “XeF Ground State Kinetics Analysis,” Appl. Opt. 26, 2533–2538 (1987).
[CrossRef] [PubMed]

A. Mandl, L. Litzenberger, “XeF Laser at a High Electron Beam Pump Rate,” Appl. Phys. Lett. 51, 955–957 (1987).
[CrossRef]

D. H. Burde et al., “Mechanism for Improved XeF Laser Performance at Elevated Temperatures,” Appl. Opt. 26, 2539–2543 (1987).
[CrossRef] [PubMed]

W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
[CrossRef]

1986

W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986).
[CrossRef]

W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986).
[CrossRef]

1984

1983

P. C. Tellinghuisen, J. Tellinghuisen, “B→X Transition in 136Xe19F,” Appl. Phys. Lett. 43, 898–900 (1983).
[CrossRef]

1982

1981

J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981).
[CrossRef]

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

1980

S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980).
[CrossRef]

1979

L. F. Champagne, “Temperature-Dependent Absorption Processes in the XeF Laser,” Appl. Phys. Lett. 35, 516–519 (1979).
[CrossRef]

J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
[CrossRef]

1978

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

1977

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

1963

L. M. Frantz, J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Bigio, I. J.

Blauer, J. A.

Bott, J. F.

J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).

Brau, C. A.

C. A. Brau, in Excimer Lasers, C. K. Rhodes, Ed. (Springer-Verlag, Berlin, 1979), p. 88.

Burde, D. H.

Center, R. E.

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

Champagne, L. F.

L. F. Champagne, “Temperature-Dependent Absorption Processes in the XeF Laser,” Appl. Phys. Lett. 35, 516–519 (1979).
[CrossRef]

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

Copeland, D. A.

Coxon, J. A.

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

Djeu, N.

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

Eden, J. G.

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

Ewing, J. J.

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

Feld, M.

S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980).
[CrossRef]

Feldman, B. J.

Fisher, R. A.

Ford, D. H.

W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
[CrossRef]

W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.

Frantz, L. M.

L. M. Frantz, J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Fulghum, S.

S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980).
[CrossRef]

Guyer, D. R.

W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
[CrossRef]

Harris, N. W.

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

Heidner, R. F.

J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).

Holloway, J. S.

J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).

Hsia, J. C.

J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

Jacob, J. H.

J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

Javan, A.

S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980).
[CrossRef]

Kimura, W. D.

W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
[CrossRef]

W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986).
[CrossRef]

W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986).
[CrossRef]

S. E. Moody, W. D. Kimura, “The Role of Atomic Absorption in Xenon Fluoride Lasers,” in Proceedings of the International Conference on Lasers '85, C. P. Wang, Ed. (STS Press, McLean, 1986), p. 423–428.

W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.

Klosterman, E. L.

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), pp. 123–170.

Koffend, J. B.

J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).

Komine, H.

J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981).
[CrossRef]

Kwok, M. A.

J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).

Levin, L. A.

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

Litzenberger, L.

A. Mandl, L. Litzenberger, “XeF Laser at a High Electron Beam Pump Rate,” Appl. Phys. Lett. 51, 955–957 (1987).
[CrossRef]

Mandl, A.

A. Mandl, L. Litzenberger, “XeF Laser at a High Electron Beam Pump Rate,” Appl. Phys. Lett. 51, 955–957 (1987).
[CrossRef]

Mangano, J. A.

J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

McKen, D. C. D.

Merry, G. A.

Moody, S. E.

W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986).
[CrossRef]

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.

S. E. Moody, W. D. Kimura, “The Role of Atomic Absorption in Xenon Fluoride Lasers,” in Proceedings of the International Conference on Lasers '85, C. P. Wang, Ed. (STS Press, McLean, 1986), p. 423–428.

Nodvik, J. S.

L. M. Frantz, J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Pindroh, A. L.

A. L. Pindroh, Spectra Technology, Inc., private communication.

Redosejevs, R.

Rokni, M.

J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

Salesky, E. T.

W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986).
[CrossRef]

Seamans, J. F.

W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
[CrossRef]

W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986).
[CrossRef]

W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986).
[CrossRef]

W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.

Searles, S. K.

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

Setser, D. W.

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

Slatkine, M.

Stappaerts, E. A.

J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981).
[CrossRef]

Tellinghuisen, J.

P. C. Tellinghuisen, J. Tellinghuisen, “B→X Transition in 136Xe19F,” Appl. Phys. Lett. 43, 898–900 (1983).
[CrossRef]

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

Tellinghuisen, P. C.

P. C. Tellinghuisen, J. Tellinghuisen, “B→X Transition in 136Xe19F,” Appl. Phys. Lett. 43, 898–900 (1983).
[CrossRef]

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

Tomov, I. V.

Turner, C. E.

Valazco, J. E.

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

West, J. B.

J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981).
[CrossRef]

Wilkins, R. L.

R. L. Wilkins, “Theoretical Calculations of XeF Ground State Kinetics,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-39, (unpublished).

Yang, T. T.

Appl. Opt.

Appl. Phys. Lett.

P. C. Tellinghuisen, J. Tellinghuisen, “B→X Transition in 136Xe19F,” Appl. Phys. Lett. 43, 898–900 (1983).
[CrossRef]

W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986).
[CrossRef]

A. Mandl, L. Litzenberger, “XeF Laser at a High Electron Beam Pump Rate,” Appl. Phys. Lett. 51, 955–957 (1987).
[CrossRef]

L. F. Champagne, “Temperature-Dependent Absorption Processes in the XeF Laser,” Appl. Phys. Lett. 35, 516–519 (1979).
[CrossRef]

L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977).
[CrossRef]

W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986).
[CrossRef]

W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987).
[CrossRef]

J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979).
[CrossRef]

IEEE J. Quantum Electron.

S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981).
[CrossRef]

S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

J. Appl. Phys.

L. M. Frantz, J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981).
[CrossRef]

J. Chem. Phys.

P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978).
[CrossRef]

Opt. Lett.

Other

W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.

S. E. Moody, W. D. Kimura, “The Role of Atomic Absorption in Xenon Fluoride Lasers,” in Proceedings of the International Conference on Lasers '85, C. P. Wang, Ed. (STS Press, McLean, 1986), p. 423–428.

C. A. Brau, in Excimer Lasers, C. K. Rhodes, Ed. (Springer-Verlag, Berlin, 1979), p. 88.

A. L. Pindroh, Spectra Technology, Inc., private communication.

R. L. Wilkins, “Theoretical Calculations of XeF Ground State Kinetics,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-39, (unpublished).

J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).

W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), pp. 123–170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Energy level diagram for XeF (based on Ref. 4).

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

Unsaturated XeF gain spectra (neon diluent), (a) E-beam power deposition is ≈270 kW/cm3; gas temperature is 294 K. (b) Same e-beam deposition as in (a); gas temperature is 400 K. (c) Same temperature as in (b); e-beam deposition is ≈380 kW/cm3. ≈1.5 MW/cm2, respectively.

Fig. 4
Fig. 4

XeF gain spectra while being saturated by an 8-GHz bandwidth laser beam tuned to 353.2 nm (gas temperature is 400 K, e-beam deposition is ≈270 kW/cm3). (a) Laser flux is ≈0.25 MW/cm2. (b) Laser flux is ≈1.5 MW/cm2. (c) Laser flux is ≈1.6 MW/cm2 and the gas temperature is 294 K. (d) Laser flux is ≈1.0 MW/cm2 and the e-beam deposition is ≈380 kW/cm3.

Fig. 5
Fig. 5

XeF gain spectrum while being saturated by an 8-GHz bandwidth laser beam tuned to 351.2 nm at a flux of ≈1.1 MW/cm2 (gas temperature is 400 K, e-beam deposition is ≈270 kW/cm3).

Fig. 6
Fig. 6

XeF gain spectra while being saturated by an 8-GHz bandwidth laser beam at fluxes of 5–6 MW/cm2 (gas temperature is 400 K, e-beam deposition is ≈380 kW/cm3). (a) Saturation laser wavelength is 351.1 nm. (b) Saturation laser wavelength is 351.2 nm. (c) Saturation laser wavelength is 353.2 nm.

Fig. 7
Fig. 7

XeF gain spectra while being saturated by a 4-GHz bandwidth laser beam (gas temperature is 400 K, e-beam deposition is ≈270 kW/cm3). (a) Saturation laser wavelength is 351.1 nm, flux is ≈1.3 MW/cm2. (b) Saturation laser wavelength is 351.2 nm, flux is ≈0.9 MW/cm2. (c) Saturation laser wavelength is 353.2 nm, flux is ≈0.9 MW/cm2.

Fig. 8
Fig. 8

XeF gain spectra while being saturated by a 4-GHz bandwidth laser beam tuned off the normal laser line (gas temperature is 400 K, e-beam deposition is ≈270 kW/cm3). (a) Saturation laser wavelength is 351.6 nm, flux is ≈1.0 MW/cm2. (b) Saturation laser wavelength is 353.7 nm, flux is ≈1.2 MW/cm2.

Fig. 9
Fig. 9

XeF gain spectra of an argon diluent gas mixture (1 atm) at 294 K. (a) Unsaturated gain spectrum, (b) Saturation laser wavelength is 353.2 nm, 8-GHz bandwidth, with a flux of ≈1.2 MW/cm2.

Fig. 10
Fig. 10

XeF gain spectra while being saturated by 8-GHz bandwidth laser beams tuned to 351.2 and 353.2 nm (gas temperature is 400 K, e-beam deposition is ≈380 kW/cm3). (a) Sum of the laser fluxes is ≈0.6 MW/cm2. (b) Sum of the laser fluxes is ≈2.5 MW/cm2. (c) Sum of the laser fluxes is ≈11 MW/cm2. Individual laser fluxes are approximately equal to each other.

Fig. 11
Fig. 11

XeF gain spectra while being saturated by 8-GHz bandwidth laser beams at total fluxes of ≈11 MW/cm2 (gas temperature is 400 K, e-beam deposition is ≈380 kW/cm3). Individual laser fluxes are approximately equal to each other. (a) Saturation laser wavelengths are 351.1 and 353.2 nm. (b) Saturation laser wavelengths are 351.1 and 351.2 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g = 1 L ln I out I in .

Metrics