Abstract

Nonresonant third harmonic generation with tuning range between 157.0–158.8 nm and 210.4–214.0 nm in zinc vapor is reported. Using two-photon excitation of Zn 4s4d1D2, 4s6s1S0, and 4s6d1D2 states, parametric processes with signal waves 213.8 nm, 159.0 nm, and 145.8 nm are also investigated.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein, “Generation of Coherent Tunable VUV Radiation,” in Spectrosc. VI,H. P. Weber, W. Luthy, Eds. (Springer Verlag, New York, 1983), pp. 387–391.
  2. R. Hilbig, R. Wallenstein, “Resonant Sum and Difference Frequency Mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
    [CrossRef]
  3. W. Jamroz, P. E. LaRocque, B. P. Stoicheff, “Generation of Continuously Tunable Coherent Vacuum-Ultraviolet Radiation (140 to 106 nm) in zince vapor,” Opt. Lett. 7, 617–619 (1982).
    [CrossRef] [PubMed]
  4. C. E. Moore, Atomic Energy Levels, NSRDS-NBS35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. II, pp. 124–126.
  5. G. C. Bjorklund, “Effect of Focusing on Third-Order Nonlinear Processes in Isotropic Media,” IEEE J. Quantum Electron. QE-11, 287–296(1975).
    [CrossRef]
  6. N. V. Afanaseva, “Calculation of Oscillator Strengths of the Principal Series of Zinc by the Two-Channel Quantum Defect Method,” Opt. Spectrosc. USSR 52, 465–468 (1982).
  7. W. L. Wiese et al., Atomic Transition Probabilities, NSRDS-NBS22 (U.S. Government Printing Office, Washington, D.C., 1969), Vol. II, pp. 192–200.

1983 (1)

R. Hilbig, R. Wallenstein, “Resonant Sum and Difference Frequency Mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[CrossRef]

1982 (2)

N. V. Afanaseva, “Calculation of Oscillator Strengths of the Principal Series of Zinc by the Two-Channel Quantum Defect Method,” Opt. Spectrosc. USSR 52, 465–468 (1982).

W. Jamroz, P. E. LaRocque, B. P. Stoicheff, “Generation of Continuously Tunable Coherent Vacuum-Ultraviolet Radiation (140 to 106 nm) in zince vapor,” Opt. Lett. 7, 617–619 (1982).
[CrossRef] [PubMed]

1975 (1)

G. C. Bjorklund, “Effect of Focusing on Third-Order Nonlinear Processes in Isotropic Media,” IEEE J. Quantum Electron. QE-11, 287–296(1975).
[CrossRef]

Afanaseva, N. V.

N. V. Afanaseva, “Calculation of Oscillator Strengths of the Principal Series of Zinc by the Two-Channel Quantum Defect Method,” Opt. Spectrosc. USSR 52, 465–468 (1982).

Bjorklund, G. C.

G. C. Bjorklund, “Effect of Focusing on Third-Order Nonlinear Processes in Isotropic Media,” IEEE J. Quantum Electron. QE-11, 287–296(1975).
[CrossRef]

Hilber, G.

R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein, “Generation of Coherent Tunable VUV Radiation,” in Spectrosc. VI,H. P. Weber, W. Luthy, Eds. (Springer Verlag, New York, 1983), pp. 387–391.

Hilbig, R.

R. Hilbig, R. Wallenstein, “Resonant Sum and Difference Frequency Mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[CrossRef]

R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein, “Generation of Coherent Tunable VUV Radiation,” in Spectrosc. VI,H. P. Weber, W. Luthy, Eds. (Springer Verlag, New York, 1983), pp. 387–391.

Jamroz, W.

LaRocque, P. E.

Moore, C. E.

C. E. Moore, Atomic Energy Levels, NSRDS-NBS35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. II, pp. 124–126.

Stoicheff, B. P.

Timmermann, A.

R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein, “Generation of Coherent Tunable VUV Radiation,” in Spectrosc. VI,H. P. Weber, W. Luthy, Eds. (Springer Verlag, New York, 1983), pp. 387–391.

Wallenstein, R.

R. Hilbig, R. Wallenstein, “Resonant Sum and Difference Frequency Mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[CrossRef]

R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein, “Generation of Coherent Tunable VUV Radiation,” in Spectrosc. VI,H. P. Weber, W. Luthy, Eds. (Springer Verlag, New York, 1983), pp. 387–391.

Wiese, W. L.

W. L. Wiese et al., Atomic Transition Probabilities, NSRDS-NBS22 (U.S. Government Printing Office, Washington, D.C., 1969), Vol. II, pp. 192–200.

IEEE J. Quantum Electron. (2)

G. C. Bjorklund, “Effect of Focusing on Third-Order Nonlinear Processes in Isotropic Media,” IEEE J. Quantum Electron. QE-11, 287–296(1975).
[CrossRef]

R. Hilbig, R. Wallenstein, “Resonant Sum and Difference Frequency Mixing in Hg,” IEEE J. Quantum Electron. QE-19, 1759–1770 (1983).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. USSR (1)

N. V. Afanaseva, “Calculation of Oscillator Strengths of the Principal Series of Zinc by the Two-Channel Quantum Defect Method,” Opt. Spectrosc. USSR 52, 465–468 (1982).

Other (3)

W. L. Wiese et al., Atomic Transition Probabilities, NSRDS-NBS22 (U.S. Government Printing Office, Washington, D.C., 1969), Vol. II, pp. 192–200.

R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein, “Generation of Coherent Tunable VUV Radiation,” in Spectrosc. VI,H. P. Weber, W. Luthy, Eds. (Springer Verlag, New York, 1983), pp. 387–391.

C. E. Moore, Atomic Energy Levels, NSRDS-NBS35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. II, pp. 124–126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the apparatus.

Fig. 2
Fig. 2

Energy level diagram of Zn.

Fig. 3
Fig. 3

Third harmonic intensity vs fundamental wavelength at different pressure of Ar buffer gas with the oven temperature t = 570°C.

Fig. 4
Fig. 4

Third harmonic intensity ITHG vs pressure of Ar buffer gas.

Fig. 5
Fig. 5

Theoretical curve of third harmonic intensity ITHG vs the pressure of Ar buffer gas.

Fig. 6
Fig. 6

Third harmonic intensity ITHG vs oven temperature.

Fig. 7
Fig. 7

Third harmonic intensity ITHG vs pump energy.

Fig. 8
Fig. 8

Theoretical curve of third harmonic intensity ITHG vs the densities of Zn vapor.

Fig. 9
Fig. 9

Third harmonic intensity ITHG vs fundamental wavelength.

Fig. 10
Fig. 10

Third harmonic intensity ITHG vs oven temperature.

Fig. 11
Fig. 11

Spectra of the parametric process (41D2 − 41P1 − 41S0) at 460°C, 504°C, respectively. -----indicate atomic resonance lines.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I THG = 4.74 × 10 4 k L 6 k T 2 n L 4 | N Z n χ ( 3 ) | 2 I L 3 F ( b Δ k ) ,

Metrics