Abstract

We have fabricated low pass filters made of spherical glass beads embedded in polyethylene and measured the transmittance at room temperature and 1.3 K as a function of the diameter and the filling factor of the glass beads. The cutoff frequency is a function of the bead diameter. Compared with the transmittance of thin glass plates or Fluorogold filters, these filters have a sharper cutoff due to the effect of scattering by the spherical beads. This effect becomes prominent at low temperature, because of the decrease in the absorption coefficient of glass itself. The glass bead filters have very low transmittance above the cutoff frequency. One of the filters we fabricated has a transmittance of <5 × 10−4 between 50 and 1000 cm−1.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamada, A. Mitsuishi, H. Yoshinaga, “Transmission Filters in the Far-Infrared Region,” J. Opt. Soc. Am. 52, 17–19 (1962).
    [CrossRef]
  2. H. Yoshinaga, “Recent Developments in Far Infrared Spectroscopic Techniques,” Prog. Opt. 11, 77–122 (1973).
    [CrossRef]
  3. S. E. Whitcomb, J. Keene, “Low-Pass Interference Filters for Submillimeter Astronomy,” Appl. Opt. 19, 197–198 (1980).
    [CrossRef] [PubMed]
  4. D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326–344 (1973).
    [CrossRef]
  5. G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
    [CrossRef]
  6. G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
    [CrossRef]
  7. K. R. Armstrong, F. J. Low, “Far-Infrared Filters Utilizing Small Particle Scattering and Antireflection Coatings,” Appl. Opt. 13, 425–430 (1974).
    [CrossRef] [PubMed]
  8. A. E. Lange, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, P. L. Richards, S. Sato, “Rocket-Borne Submillimeter Radiometer,” Appl. Opt. 26, 401–409 (1987).
    [CrossRef] [PubMed]
  9. T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
    [CrossRef]
  10. J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
    [CrossRef]
  11. M. Halpern, H. P. Gush, E. Wishnow, V. De Cosmo, “Far Infrared Transmission of Dielectrics at Cryogenic and Room Temperatures: Glass, Fluorogold, Eccosorb, Stycast, and Various Plastics,” Appl. Opt. 25, 565–570 (1986).
    [CrossRef] [PubMed]
  12. D. D. Nolte, A. E. Lange, P. L. Richards, “Far-Infrared Dichroic Bandpass Filters,” Appl. Opt. 24, 1541–1545 (1985).
    [CrossRef] [PubMed]
  13. T. Timusk, P. L. Richards, “Near Millimeter Wave Bandpass Filters,” Appl. Opt. 20, 1355–1360 (1981).
    [CrossRef] [PubMed]

1988

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

1987

1986

1985

1982

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
[CrossRef]

1981

1980

1975

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

1974

1973

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326–344 (1973).
[CrossRef]

H. Yoshinaga, “Recent Developments in Far Infrared Spectroscopic Techniques,” Prog. Opt. 11, 77–122 (1973).
[CrossRef]

1962

Armstrong, K. R.

Birch, J. R.

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

Blanco, A.

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

Cook, R. J.

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

D'Alessandro, F.

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

Dall'Oglio, G.

G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
[CrossRef]

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

De Bernardis, P.

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
[CrossRef]

De Cosmo, V.

Fonti, S.

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

Gush, H. P.

Halpern, M.

Harding, A. F.

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

Hayakawa, S.

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

A. E. Lange, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, P. L. Richards, S. Sato, “Rocket-Borne Submillimeter Radiometer,” Appl. Opt. 26, 401–409 (1987).
[CrossRef] [PubMed]

Jones, R. G.

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

Keene, J.

Lange, A. E.

Low, F. J.

Masi, S.

G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
[CrossRef]

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

Matsumoto, T.

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

A. E. Lange, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, P. L. Richards, S. Sato, “Rocket-Borne Submillimeter Radiometer,” Appl. Opt. 26, 401–409 (1987).
[CrossRef] [PubMed]

Matsuo, H.

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

A. E. Lange, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, P. L. Richards, S. Sato, “Rocket-Borne Submillimeter Radiometer,” Appl. Opt. 26, 401–409 (1987).
[CrossRef] [PubMed]

Melchiorri, B.

G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
[CrossRef]

Melchiorri, F.

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

Mitsuishi, A.

Muehlner, D.

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326–344 (1973).
[CrossRef]

Murakami, H.

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

A. E. Lange, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, P. L. Richards, S. Sato, “Rocket-Borne Submillimeter Radiometer,” Appl. Opt. 26, 401–409 (1987).
[CrossRef] [PubMed]

Nolte, D. D.

Price, G. D.

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

Richards, P. L.

Sato, S.

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

A. E. Lange, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, P. L. Richards, S. Sato, “Rocket-Borne Submillimeter Radiometer,” Appl. Opt. 26, 401–409 (1987).
[CrossRef] [PubMed]

Timusk, T.

Weiss, R.

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326–344 (1973).
[CrossRef]

Whitcomb, S. E.

Wishnow, E.

Yamada, Y.

Yoshinaga, H.

H. Yoshinaga, “Recent Developments in Far Infrared Spectroscopic Techniques,” Prog. Opt. 11, 77–122 (1973).
[CrossRef]

Y. Yamada, A. Mitsuishi, H. Yoshinaga, “Transmission Filters in the Far-Infrared Region,” J. Opt. Soc. Am. 52, 17–19 (1962).
[CrossRef]

Appl. Opt.

Astrophys. J.

T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A. E. Lange, P. L. Richards, “The Submillimeter Spectrum of the Cosmic Background Radiation,” Astrophys. J. 329, 567–571 (1988).
[CrossRef]

Infrared Phys.

G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. D'Alessandro, S. Fonti, “Polarization Properties of Fluorogold in the Far-Infrared,” Infrared Phys. 22, 185–186 (1982).
[CrossRef]

G. Dall'Oglio, B. Melchiorri, P. De Bernardis, S. Masi, “Non-Polarizing Far-Infrared Filters,” Infrared Phys. 22, 307–308 (1982).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D

J. R. Birch, R. J. Cook, A. F. Harding, R. G. Jones, G. D. Price, “The Optical Constants of Ordinary Glass from 0.29 to 4000 cm−1,” J. Phys. D 8, 1353–1358 (1975).
[CrossRef]

Phys. Rev. D

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326–344 (1973).
[CrossRef]

Prog. Opt.

H. Yoshinaga, “Recent Developments in Far Infrared Spectroscopic Techniques,” Prog. Opt. 11, 77–122 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmittance of glass bead filters 1, 2, 3a, and 5 (solid line). The filter parameters are listed in Table I. Dotted lines show the calculated transmittance of glass plates of the same thickness as the effective thickness of each of the glass bead filters.

Fig. 2
Fig. 2

Transmittance of glass bead filters 3a, 3b, and 3c made of the same size glass beads. The filling factors for 3a, 3b, and 3c are 2.7, 1.1, and 0.88, respectively. Dotted lines show the calculated transmittance of glass plates of the same thickness as the effective thickness of each glass bead filter.

Fig. 3
Fig. 3

The 300 and 1.2 K transmittance for filter 4. Dotted lines (F and P) show the transmittance for 2-mm thick Fluorogold at 1.2 K and 1-mm thick Pyrex11 at 5 K.

Fig. 4
Fig. 4

Transmittance of filter 4 at stopband frequencies (GB, solid line). Dotted line (G) and thin line (P) show the transmittance of a 0.5-mm thick glass plate and a 0.5-mm thick polyethylene, respectively.

Fig. 5
Fig. 5

Transmittance of the filter for ground-based near millimeter wave observation (thin line) and the glass bead filter used as a blocking filter (solid line), which are compared with the atmospheric transmittance (dotted line).

Tables (1)

Tables Icon

Table I Parameters of Glass Bead Filters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = N π a 2 ,
D = 4 π 3 a 3 N = 4 3 a S ,

Metrics