Abstract

We report the observation of electrically induced changes in transmissivity in Fabry-Perot devices consisting of spin-cast azo-dye/polymer films deposited between gold mirrors. In poled samples the observed modulation shows a linear dependence on the applied modulating voltage. The ratio of the transmissivity modulation observed using incident transverse magnetic polarization to that observed using transverse electric polarization is used to demonstrate that the electrooptic effect dominates the modulation. This is, to our knowledge, the first reported use of a polymeric thin film linear electrooptic material in a Fabry-Perot structure and demonstrates the use of etalons to enhance electrooptic effects in very thin films.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
    [CrossRef]
  2. M. Okada, S. Shimizu, S. Ieiri, “Tuning of a Dye Laser by a Birefringent Fabry-Perot Etalon,” Appl. Opt. 14, 917–922 (1975).
    [CrossRef] [PubMed]
  3. D. Bonaccini, R. N. Smartt, “Lithium Niobate Double Channel Fabry-Perot Interferometer for Solar Corona Uses,” Appl. Opt. 27, 5095–5102 (1988).
    [CrossRef] [PubMed]
  4. E. I. Gordon, J. D. Rigden, “The Fabry-Perot Electrooptic Modulator,” Bell Sys. Tech. J. 42, 155–179 (1963).
  5. J. T. Ruscio, “A Coherent Light Modulator,” IEEE J. Quantum Electron. QE-1, 182–183 (1965).
    [CrossRef]
  6. G. Marowsky, A. Gierulski, “Interferometric Enhancement of Surface-Generated Second Harmonic Radiation,” Appl. Phys. B 34, 69–72 (1984).
    [CrossRef]
  7. H. Uchiki, T. Kobayashi, “Measurement of Electrooptic Constants of Polycarbonate Films Doped with 4-diethylamino-4′-nitrostilbene by a Novel Method,” presented at CLEO, paper WW5 (1988).
  8. F. Gires, P. Tournois, “Interféromètre Utilisable Pour la Compression d'lmpulsions Lumineuses en Fréquence,” C.R. Acad. Sc. Paris 258, 6112–6115 (1964).
  9. S. T. Kowel et al., “Future Applications of Ordered Polymeric Thin Films,” Thin Solid Films 152, 377–403 (1987).
    [CrossRef]
  10. S. T. Kowel, N. Matloff, C. Eldering, “Electro-Optical Interface,” U.S. Patent No4,813,772 (21Mar.1989).
  11. R. J. Simes et al., “Electrically Tunable Fabry-Perot Mirror Using Multiple Quantum Well Index Modulation,” Appl. Phys. Lett. 53, 637–639 (1988).
    [CrossRef]
  12. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, A. Dienes, “Second Harmonic Generation and Absorption Studies of Polymer/Dye Films Oriented by Corona-Onset Poling at Elevated Temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
    [CrossRef]
  13. B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
    [CrossRef]
  14. D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
    [CrossRef]
  15. G. Hernandez, Fabry-Perot Interferometers (Cambridge U.P., Cambridge, 1986).
  16. G. Hernandez, “Fabry-Perot with an Absorbing Etalon Cavity,” Appl. Opt. 24, 3062–3067 (1985).
    [CrossRef] [PubMed]
  17. K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-Order Nonlinear-Optical Processes in Orientationally Ordered Materials: Relationship Between Molecular and Macroscopic Properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  18. C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
    [CrossRef]
  19. D. J. Williams, “Nonlinear Optical Properties of Guest-Host Polymer Structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, Eds. (Academic Press, New York, 1987).
    [CrossRef]
  20. D. J. Williams, “Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities,” Angew. Chem Int. Ed. Engl. 23, 690–703 (1984).
    [CrossRef]
  21. M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).
  22. M. A. Polonus, Applied Electromagnetics (McGraw-Hill, New York, 1978).
  23. K. D. Singer et al., “Electro-Optic Phase Modulation and Optical Second Harmonic Generation in Corona-Poled Polymer Films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
    [CrossRef]

1989 (2)

M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, A. Dienes, “Second Harmonic Generation and Absorption Studies of Polymer/Dye Films Oriented by Corona-Onset Poling at Elevated Temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
[CrossRef]

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

1988 (4)

M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).

K. D. Singer et al., “Electro-Optic Phase Modulation and Optical Second Harmonic Generation in Corona-Poled Polymer Films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

D. Bonaccini, R. N. Smartt, “Lithium Niobate Double Channel Fabry-Perot Interferometer for Solar Corona Uses,” Appl. Opt. 27, 5095–5102 (1988).
[CrossRef] [PubMed]

R. J. Simes et al., “Electrically Tunable Fabry-Perot Mirror Using Multiple Quantum Well Index Modulation,” Appl. Phys. Lett. 53, 637–639 (1988).
[CrossRef]

1987 (3)

S. T. Kowel et al., “Future Applications of Ordered Polymeric Thin Films,” Thin Solid Films 152, 377–403 (1987).
[CrossRef]

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-Order Nonlinear-Optical Processes in Orientationally Ordered Materials: Relationship Between Molecular and Macroscopic Properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

1985 (1)

1984 (3)

C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
[CrossRef]

D. J. Williams, “Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities,” Angew. Chem Int. Ed. Engl. 23, 690–703 (1984).
[CrossRef]

G. Marowsky, A. Gierulski, “Interferometric Enhancement of Surface-Generated Second Harmonic Radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

1981 (1)

D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

1975 (1)

1965 (1)

J. T. Ruscio, “A Coherent Light Modulator,” IEEE J. Quantum Electron. QE-1, 182–183 (1965).
[CrossRef]

1964 (1)

F. Gires, P. Tournois, “Interféromètre Utilisable Pour la Compression d'lmpulsions Lumineuses en Fréquence,” C.R. Acad. Sc. Paris 258, 6112–6115 (1964).

1963 (1)

E. I. Gordon, J. D. Rigden, “The Fabry-Perot Electrooptic Modulator,” Bell Sys. Tech. J. 42, 155–179 (1963).

Anderson, B. L.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

Bonaccini, D.

De Rossi, D.

C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
[CrossRef]

Dienes, A.

Dines, T.

D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Domenici, C.

C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
[CrossRef]

Eldering, C.

S. T. Kowel, N. Matloff, C. Eldering, “Electro-Optical Interface,” U.S. Patent No4,813,772 (21Mar.1989).

Gierulski, A.

G. Marowsky, A. Gierulski, “Interferometric Enhancement of Surface-Generated Second Harmonic Radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

Gires, F.

F. Gires, P. Tournois, “Interféromètre Utilisable Pour la Compression d'lmpulsions Lumineuses en Fréquence,” C.R. Acad. Sc. Paris 258, 6112–6115 (1964).

Gordon, E. I.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot Electrooptic Modulator,” Bell Sys. Tech. J. 42, 155–179 (1963).

Hall, R. C.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

Hayes, B. P.

D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Hernandez, G.

Higgins, B. G.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, A. Dienes, “Second Harmonic Generation and Absorption Studies of Polymer/Dye Films Oriented by Corona-Onset Poling at Elevated Temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
[CrossRef]

Ieiri, S.

Kann, H. E.

M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).

King, L. A.

M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).

Knoesen, A.

Kobayashi, T.

H. Uchiki, T. Kobayashi, “Measurement of Electrooptic Constants of Polycarbonate Films Doped with 4-diethylamino-4′-nitrostilbene by a Novel Method,” presented at CLEO, paper WW5 (1988).

Kowel, S. T.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, A. Dienes, “Second Harmonic Generation and Absorption Studies of Polymer/Dye Films Oriented by Corona-Onset Poling at Elevated Temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
[CrossRef]

S. T. Kowel et al., “Future Applications of Ordered Polymeric Thin Films,” Thin Solid Films 152, 377–403 (1987).
[CrossRef]

S. T. Kowel, N. Matloff, C. Eldering, “Electro-Optical Interface,” U.S. Patent No4,813,772 (21Mar.1989).

Kuzyk, M. G.

M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-Order Nonlinear-Optical Processes in Orientationally Ordered Materials: Relationship Between Molecular and Macroscopic Properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

Lei, D.

D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Lindsay, G.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

Marowsky, G.

G. Marowsky, A. Gierulski, “Interferometric Enhancement of Surface-Generated Second Harmonic Radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

Matloff, N.

S. T. Kowel, N. Matloff, C. Eldering, “Electro-Optical Interface,” U.S. Patent No4,813,772 (21Mar.1989).

McWhirter, I.

D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Mortazavi, M. A.

Nannini, A.

C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
[CrossRef]

Newnham, R. E.

D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Okada, M.

Polonus, M. A.

M. A. Polonus, Applied Electromagnetics (McGraw-Hill, New York, 1978).

Rees, D.

D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Rigden, J. D.

E. I. Gordon, J. D. Rigden, “The Fabry-Perot Electrooptic Modulator,” Bell Sys. Tech. J. 42, 155–179 (1963).

Runt, J.

D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Ruscio, J. T.

J. T. Ruscio, “A Coherent Light Modulator,” IEEE J. Quantum Electron. QE-1, 182–183 (1965).
[CrossRef]

Safari, A.

D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Shimizu, S.

Simes, R. J.

R. J. Simes et al., “Electrically Tunable Fabry-Perot Mirror Using Multiple Quantum Well Index Modulation,” Appl. Phys. Lett. 53, 637–639 (1988).
[CrossRef]

Singer, K. D.

K. D. Singer et al., “Electro-Optic Phase Modulation and Optical Second Harmonic Generation in Corona-Poled Polymer Films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-Order Nonlinear-Optical Processes in Orientationally Ordered Materials: Relationship Between Molecular and Macroscopic Properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

Smartt, R. N.

Sohn, J. E.

Strove, P.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

Tournois, P.

F. Gires, P. Tournois, “Interféromètre Utilisable Pour la Compression d'lmpulsions Lumineuses en Fréquence,” C.R. Acad. Sc. Paris 258, 6112–6115 (1964).

Uchiki, H.

H. Uchiki, T. Kobayashi, “Measurement of Electrooptic Constants of Polycarbonate Films Doped with 4-diethylamino-4′-nitrostilbene by a Novel Method,” presented at CLEO, paper WW5 (1988).

Verni, R.

C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
[CrossRef]

Williams, D. J.

D. J. Williams, “Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities,” Angew. Chem Int. Ed. Engl. 23, 690–703 (1984).
[CrossRef]

D. J. Williams, “Nonlinear Optical Properties of Guest-Host Polymer Structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, Eds. (Academic Press, New York, 1987).
[CrossRef]

Angew. Chem Int. Ed. Engl. (1)

D. J. Williams, “Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities,” Angew. Chem Int. Ed. Engl. 23, 690–703 (1984).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

G. Marowsky, A. Gierulski, “Interferometric Enhancement of Surface-Generated Second Harmonic Radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

Appl. Phys. Lett. (2)

R. J. Simes et al., “Electrically Tunable Fabry-Perot Mirror Using Multiple Quantum Well Index Modulation,” Appl. Phys. Lett. 53, 637–639 (1988).
[CrossRef]

K. D. Singer et al., “Electro-Optic Phase Modulation and Optical Second Harmonic Generation in Corona-Poled Polymer Films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

Bell Sys. Tech. J. (1)

E. I. Gordon, J. D. Rigden, “The Fabry-Perot Electrooptic Modulator,” Bell Sys. Tech. J. 42, 155–179 (1963).

C.R. Acad. Sc. Paris (1)

F. Gires, P. Tournois, “Interféromètre Utilisable Pour la Compression d'lmpulsions Lumineuses en Fréquence,” C.R. Acad. Sc. Paris 258, 6112–6115 (1964).

Ferroelectrics (1)

C. Domenici, D. De Rossi, A. Nannini, R. Verni, “Piezoelectric Properties and Dielectric Losses in PVDF-PMMA Blends,” Ferroelectrics 60, 61–70 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. T. Ruscio, “A Coherent Light Modulator,” IEEE J. Quantum Electron. QE-1, 182–183 (1965).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. E (1)

D. Rees, I. McWhirter, B. P. Hayes, T. Dines, “A Stable, Rugged, Capacitance-Stabilized Piezoelectric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Macromolecules (1)

D. Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric Properties of Azo-dye-poly(methyl methacrylate) Mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Nonlinear Optical Properties of Materials (1)

M. G. Kuzyk, K. D. Singer, H. E. Kann, L. A. King, “Controlling the Second Order Nonlinear Optical Tensor Properties of Poled Films with Stress,” Nonlinear Optical Properties of Materials 9, 244–247 (1988).

Synth. Met. (1)

B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Strove, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989).
[CrossRef]

Thin Solid Films (1)

S. T. Kowel et al., “Future Applications of Ordered Polymeric Thin Films,” Thin Solid Films 152, 377–403 (1987).
[CrossRef]

Other (5)

S. T. Kowel, N. Matloff, C. Eldering, “Electro-Optical Interface,” U.S. Patent No4,813,772 (21Mar.1989).

H. Uchiki, T. Kobayashi, “Measurement of Electrooptic Constants of Polycarbonate Films Doped with 4-diethylamino-4′-nitrostilbene by a Novel Method,” presented at CLEO, paper WW5 (1988).

G. Hernandez, Fabry-Perot Interferometers (Cambridge U.P., Cambridge, 1986).

D. J. Williams, “Nonlinear Optical Properties of Guest-Host Polymer Structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, Eds. (Academic Press, New York, 1987).
[CrossRef]

M. A. Polonus, Applied Electromagnetics (McGraw-Hill, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission mode Fabry-Perot etalon. Devices were constructed using PMMA or DR-1/PMMA mixtures as a spacer layer.

Fig. 2
Fig. 2

Transmissivity for a Fabry-Perot device of the type shown in Fig. 1 as a function of the incident angle (0° = normal incidence) for TM and TE incident polarizations. Solid lines indicate fit to Eq. (1).

Fig. 3
Fig. 3

Experimental setup for measurement of modulation in transmission mode Fabry-Perot etalons.

Fig. 4
Fig. 4

Linear modulation as observed in unpoled PMMA and poled PMMA Fabry-Perot etalon structures and unpoled DR-1/PMMA and poled DR-1/PMMA structures. Measurements on the etalon containing DR-1/PMMA were made 20 h after poling.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T = T e 2 ( T e + A e ) 2 1 1 + F sin 2 δ ,
F = 4 R e ( 1 R e ) 2 ,
N = π F 2 .
δ = k z l + ψ ,
dT T = F sin ( 2 δ ) k z l ( 1 + F sin 2 δ ) ( dn n + dl l ) .
( dT / T ) TM ( dT / T ) TE | n = ( 1 + F TE sin 2 δ TE ) ( 1 + F TM sin 2 δ TM ) F TM F TE ,
( dT / T ) TM ( dT / T ) TE | l = ( 1 + F TE sin 2 δ TE ) ( 1 + F TM sin 2 δ TM ) F TM F TE d n TM d n TE .
d n TM = d n eff = ½ n e 3 ( r 13 cos 2 θ f + r 33 sin 2 θ f ) dE d n TE = d n y = ½ n o 3 r 13 dE ,
( dT / T ) TM ( dT / T ) TE | l = ( 1 + F TE sin 2 δ TE ) ( 1 + F TM sin 2 δ TM ) F TM F TE · ( cos 2 θ f + r 33 r 13 sin 2 θ f ) .

Metrics