Abstract

A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
    [CrossRef]
  2. W. E. Ross, D. Psaltis, R. H. Anderson, “Two-Dimensional Magnetooptic Spatial Light Modulator for Signal Processing,” Opt. Eng. 22, 485 (1983).
    [CrossRef]
  3. C. Warde, A. M. Weiss, A. D. Fisher, T. I. Thackara, “Optical Information Processing Characteristics of the Microchannel Spatial Light Modulator,” Appl. Opt. 20, 2066 (1981).
    [CrossRef] [PubMed]
  4. H. K. Liu, J. A. Davis, R. A. Lilly, “Optical Data Processing Properties of a Liquid Crystal Television Spatial Light Modulator,” Opt. Lett. 10, 635 (1985).
    [CrossRef] [PubMed]
  5. A. D. Gara, “Real-Time Tracking of Moving Objects by Optical Correlation,” Appl. Opt. 18, 172 (1979).
    [CrossRef] [PubMed]
  6. A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,779,492 (1972).
  7. F. T. S. Yu, X. J. Lu, “Real-Time Optical Scanning Correlator,” Appl. Opt. 23, 3109 (1984).
    [CrossRef] [PubMed]
  8. S. K. Case, “Pattern Recognition with Wavelength-Multiplexed Filters,” Appl. Opt. 18, 1890 (1979).
    [CrossRef] [PubMed]
  9. T. H. Chao, M. Chen, “Pattern Recognition with a Wavelength-Angle Multiplexed Optical Scanning Correlator,” Opt. Eng. 25, 828 (1986).
    [CrossRef]
  10. D. A. Gregory, H. K. Liu, “Large-Memory Real-Time Multichannel Multiplexed Pattern Recognition,” Appl. Opt. 23, 4560 (1984).
    [CrossRef] [PubMed]
  11. S. Morozumi, “Application to the Pocket Color T.V.-TFT Array,” Electron. Mag. 30, 39 (1985).
  12. F. Mok, J. Diep, H. K. Liu, D. Psaltis, “Real-Time Computer-Generated Hologram by Means of Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 11, 748 (1986).
    [CrossRef] [PubMed]
  13. E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).
  14. A. P. Reeves, “Parallel Computer Architectures for Image Processing,” Comput. Vision Graphics Image Process. 25, 68 (1984).
    [CrossRef]

1986 (3)

T. H. Chao, M. Chen, “Pattern Recognition with a Wavelength-Angle Multiplexed Optical Scanning Correlator,” Opt. Eng. 25, 828 (1986).
[CrossRef]

F. Mok, J. Diep, H. K. Liu, D. Psaltis, “Real-Time Computer-Generated Hologram by Means of Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 11, 748 (1986).
[CrossRef] [PubMed]

E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).

1985 (2)

1984 (3)

1983 (1)

W. E. Ross, D. Psaltis, R. H. Anderson, “Two-Dimensional Magnetooptic Spatial Light Modulator for Signal Processing,” Opt. Eng. 22, 485 (1983).
[CrossRef]

1981 (1)

1979 (2)

1975 (1)

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Anderson, R. H.

W. E. Ross, D. Psaltis, R. H. Anderson, “Two-Dimensional Magnetooptic Spatial Light Modulator for Signal Processing,” Opt. Eng. 22, 485 (1983).
[CrossRef]

Bleha, W.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Boswell, D.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Case, S. K.

Chao, T. H.

T. H. Chao, M. Chen, “Pattern Recognition with a Wavelength-Angle Multiplexed Optical Scanning Correlator,” Opt. Eng. 25, 828 (1986).
[CrossRef]

Chen, M.

T. H. Chao, M. Chen, “Pattern Recognition with a Wavelength-Angle Multiplexed Optical Scanning Correlator,” Opt. Eng. 25, 828 (1986).
[CrossRef]

Davis, J. A.

Diep, J.

Fisher, A. D.

Fraas, L.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Gara, A. D.

Gregory, D. A.

Grinberg, J.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Grumet, A.

A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,779,492 (1972).

Honda, T.

E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).

Jacobsen, A.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Lilly, R. A.

Liu, H. K.

Lu, X. J.

Meyer, G.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Miller, L.

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

Mok, F.

Morozumi, S.

S. Morozumi, “Application to the Pocket Color T.V.-TFT Array,” Electron. Mag. 30, 39 (1985).

Ohyama, N.

E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).

Psaltis, D.

F. Mok, J. Diep, H. K. Liu, D. Psaltis, “Real-Time Computer-Generated Hologram by Means of Liquid-Crystal Television Spatial Light Modulator,” Opt. Lett. 11, 748 (1986).
[CrossRef] [PubMed]

W. E. Ross, D. Psaltis, R. H. Anderson, “Two-Dimensional Magnetooptic Spatial Light Modulator for Signal Processing,” Opt. Eng. 22, 485 (1983).
[CrossRef]

Reeves, A. P.

A. P. Reeves, “Parallel Computer Architectures for Image Processing,” Comput. Vision Graphics Image Process. 25, 68 (1984).
[CrossRef]

Ross, W. E.

W. E. Ross, D. Psaltis, R. H. Anderson, “Two-Dimensional Magnetooptic Spatial Light Modulator for Signal Processing,” Opt. Eng. 22, 485 (1983).
[CrossRef]

Thackara, T. I.

Tsujiuchi, J.

E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).

Warde, C.

Weiss, A. M.

Wihardio, E.

E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).

Yu, F. T. S.

Appl. Opt. (5)

Comput. Vision Graphics Image Process. (1)

A. P. Reeves, “Parallel Computer Architectures for Image Processing,” Comput. Vision Graphics Image Process. 25, 68 (1984).
[CrossRef]

Electron. Mag. (1)

S. Morozumi, “Application to the Pocket Color T.V.-TFT Array,” Electron. Mag. 30, 39 (1985).

Opt. Eng. (4)

E. Wihardio, J. Tsujiuchi, T. Honda, N. Ohyama, “Compensation of Wavelength-Shift Aberrations in an Off-Axis Holographic Zone Plate,” Opt. Eng. 25, 871 (1986).

T. H. Chao, M. Chen, “Pattern Recognition with a Wavelength-Angle Multiplexed Optical Scanning Correlator,” Opt. Eng. 25, 828 (1986).
[CrossRef]

J. Grinberg, A. Jacobsen, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Meyer, “A New Real-Time Noncoherent to Coherent Light Image Converter: The Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217 (1975).
[CrossRef]

W. E. Ross, D. Psaltis, R. H. Anderson, “Two-Dimensional Magnetooptic Spatial Light Modulator for Signal Processing,” Opt. Eng. 22, 485 (1983).
[CrossRef]

Opt. Lett. (2)

Other (1)

A. Grumet, “Automatic Target Recognition System,” U.S. Patent3,779,492 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup for multiple-object holographic tracking.

Fig. 2
Fig. 2

System geometry for MSF array syntheses.

Fig. 3
Fig. 3

Multifocus hololens addressing with a different wavelength.

Fig. 4
Fig. 4

Moving objects utilized for the tracking experiments. (a) Three object cars, a van, a sedan, and a racing car, heading in −45°, 0° and 45°, respectively. (b) and (c) The sedan moves to the right in two steps. (d) and (e) The racing car moves to the upper right corner in two steps. (f and (g) The van moves to the lower right corner in two steps.

Fig. 5
Fig. 5

Experimental demonstration of the tracking of moving objects. (a)–(c) Correlation spikes and their photoscans recorded at the output plane associated with locations of the sedan shown in Fig. 4 (a)–(c), respectively. (d)–(f) Correlation spikes and their photoscans recorded at the output plane associated with the locations of the racing car shown in Fig. 4(a), 4(d), and 4(e), respectively. (g)–(i) Correlation spikes and their photoscans recorded at the output plane associated with locations of the van shown in Fig. 4(a), 4(f), and 4(g), respectively.

Tables (1)

Tables Icon

Table I Present and Future Tracking System SBP and Limitations of the Tracking System

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L H = n = 1 N m = 1 M exp - i π λ f H × [ ( x - m a ) 2 + ( y - n b ) 2 - i 2 π λ sin θ x ] ,
E 1 ( α , β ) = S ( α λ f H , β λ f H ) * [ n = 1 N m = 1 M δ ( x - m a , y - n b ) ] ,
H m n = S m n * ( α λ f H , β λ f H ) exp [ - i 2 π λ ( sin θ m α + sin θ n β ) ] * δ ( α - m a , β - n b ) ,
E 2 ( α , β ) = n = 1 N m = 1 M [ S ( α λ f H , β λ f H ) S m n * ( α λ f H , β λ f H ) × [ exp - i 2 π λ ( sin θ m α + sin θ n β ) ] * δ ( α - m a , β - n b ) .
0 ( - x , - y ) n = 1 N m - 1 M [ s ( - x , - y ) * s n m ( - x , - y ) ] * δ ( - x + f H sin θ m , - y + f H sin θ n ) ,
Δ x m = f H ( sin θ m + 1 - sin θ m )             m = 1 , 2 M , Δ y m = f H ( sin θ n + 1 - sin θ n )             n = 1 , 2 N ,
W H ( x , y ) = C n = 1 N m = 1 M exp - i π λ f H [ ( x - m a ) 2 + ( y - n b ) 2 + i 2 π × ( sin θ λ - sin θ λ ) ] ,
sin θ = ( λ / λ ) sin θ .
W H ( x , y ) = C n = 1 N m = 1 M exp - i π λ f H [ ( x - m a ) 2 + ( y - n b ) 2 ] ,
f H = f H ( λ / λ )

Metrics