Abstract

The use of an unintensified charge-coupled device (CCD) camera for the acquisition of broadband CARS signals is demonstrated. The CCD camera offers significant advantages compared to intensified, linear photodiode array (PDA) detectors that are generally used for broadband CARS measurements. These advantages include higher spectral resolution and improved instrument function, larger dynamic range, and a 2-D format.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Charge Transfer Device Detectors for Analytical Optical Spectroscopy—Operation and Characteristics," Appl. Spectrosc. 41, 1114–1125 (1987).
    [CrossRef]
  2. R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Spectrochemical Measurements with Multichannel Integrating Detectors," Appl. Spectrosc. 41, 1125–1136 (1987).
    [CrossRef]
  3. J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
    [CrossRef]
  4. P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
    [CrossRef]
  5. W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
    [CrossRef]
  6. I. van Cruyningen, P. H. Paul, and R. K. Hanson, "Turbulent Flowfield Interpretation Through Processing of PLIF Images," Paper 8A-110, Western States Section/The Combustion Institute, Fall Meeting, Honolulu, Hawaii, Nov. (1987).
  7. W. L. Flower, Sandia National Laboratories, Unpublished Results.
  8. R. K. Chang and M. B. Long, "Optical Multichannel Detection," in Light Scattering in Solids M. Cardona and G. Guntherodt, Eds. (Springer-Verlag, New York, 1982), p. 179.
    [CrossRef]
  9. A. C. Eckbreth," Laser Diagnostics for Combustion Temperature and Species," A. K. Gupta and D. G. Lilley, Eds. (Abacus Press, Cambridge, MA, 1988).
  10. M. Pealat, P. Bouchardy, M. Lefebvre, and J.-P. Taran, "Precision of Multiplex CARS Temperature Measurements," Appl. Opt. 24, 1012–1022 (1985).
    [CrossRef] [PubMed]
  11. D. R. Snelling, R. A. Sawchuck, and G. J. Smallwood, "Multichannel Light Detectors and Their Use for CARS Spectroscopy," Appl. Opt. 23, 4083–4089 (1984).
    [CrossRef] [PubMed]
  12. R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
    [CrossRef]
  13. R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, "Species Concentration Measurements Using CARS with Non-resonant Susceptibility Normalization," Appl. Opt. 24, 2241–2251 (1985).
    [CrossRef] [PubMed]

1988 (3)

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
[CrossRef]

1987 (3)

1985 (2)

1984 (1)

Acker, W. P.

W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
[CrossRef]

Bilhorn, R. B.

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Spectrochemical Measurements with Multichannel Integrating Detectors," Appl. Spectrosc. 41, 1125–1136 (1987).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Charge Transfer Device Detectors for Analytical Optical Spectroscopy—Operation and Characteristics," Appl. Spectrosc. 41, 1114–1125 (1987).
[CrossRef]

Bouchardy, P.

Chang, R. K.

W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
[CrossRef]

R. K. Chang and M. B. Long, "Optical Multichannel Detection," in Light Scattering in Solids M. Cardona and G. Guntherodt, Eds. (Springer-Verlag, New York, 1982), p. 179.
[CrossRef]

Clark, G. L.

Denton, M. B.

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Charge Transfer Device Detectors for Analytical Optical Spectroscopy—Operation and Characteristics," Appl. Spectrosc. 41, 1114–1125 (1987).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Spectrochemical Measurements with Multichannel Integrating Detectors," Appl. Spectrosc. 41, 1125–1136 (1987).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth," Laser Diagnostics for Combustion Temperature and Species," A. K. Gupta and D. G. Lilley, Eds. (Abacus Press, Cambridge, MA, 1988).

Epperson, P. M.

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Charge Transfer Device Detectors for Analytical Optical Spectroscopy—Operation and Characteristics," Appl. Spectrosc. 41, 1114–1125 (1987).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Spectrochemical Measurements with Multichannel Integrating Detectors," Appl. Spectrosc. 41, 1125–1136 (1987).
[CrossRef]

Farrow, R. L.

Ferguson, C. R.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
[CrossRef]

Flower, W. L.

W. L. Flower, Sandia National Laboratories, Unpublished Results.

Green, R. M.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
[CrossRef]

Hanson, R. K.

I. van Cruyningen, P. H. Paul, and R. K. Hanson, "Turbulent Flowfield Interpretation Through Processing of PLIF Images," Paper 8A-110, Western States Section/The Combustion Institute, Fall Meeting, Honolulu, Hawaii, Nov. (1987).

Leach, D. H.

W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
[CrossRef]

Lefebvre, M.

Long, M. B.

R. K. Chang and M. B. Long, "Optical Multichannel Detection," in Light Scattering in Solids M. Cardona and G. Guntherodt, Eds. (Springer-Verlag, New York, 1982), p. 179.
[CrossRef]

Lucht, R. P.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
[CrossRef]

R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, "Species Concentration Measurements Using CARS with Non-resonant Susceptibility Normalization," Appl. Opt. 24, 2241–2251 (1985).
[CrossRef] [PubMed]

Palmer, R. E.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
[CrossRef]

R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, "Species Concentration Measurements Using CARS with Non-resonant Susceptibility Normalization," Appl. Opt. 24, 2241–2251 (1985).
[CrossRef] [PubMed]

Paul, P. H.

I. van Cruyningen, P. H. Paul, and R. K. Hanson, "Turbulent Flowfield Interpretation Through Processing of PLIF Images," Paper 8A-110, Western States Section/The Combustion Institute, Fall Meeting, Honolulu, Hawaii, Nov. (1987).

Pealat, M.

Sawchuck, R. A.

Sims, G. R.

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

Smallwood, G. J.

Snelling, D. R.

Sweedler, J. V.

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Spectrochemical Measurements with Multichannel Integrating Detectors," Appl. Spectrosc. 41, 1125–1136 (1987).
[CrossRef]

R. B. Bilhorn, J. V. Sweedler, P. M. Epperson, and M. B. Denton, "Charge Transfer Device Detectors for Analytical Optical Spectroscopy—Operation and Characteristics," Appl. Spectrosc. 41, 1114–1125 (1987).
[CrossRef]

Taran, J.-P.

Teets, R. E.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
[CrossRef]

vanCruyningen, I.

I. van Cruyningen, P. H. Paul, and R. K. Hanson, "Turbulent Flowfield Interpretation Through Processing of PLIF Images," Paper 8A-110, Western States Section/The Combustion Institute, Fall Meeting, Honolulu, Hawaii, Nov. (1987).

Yip, B.

W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
[CrossRef]

Anal. Chem. (2)

J. V. Sweedler, R. B. Bilhorn, P. M. Epperson, G. R. Sims, and M. B. Denton, "High-Performance Charge Transfer Device Detectors," Anal. Chem. 60, 282A–291A (1988).
[CrossRef]

P. M. Epperson, J. V. Sweedler, R. B. Bilhorn, G. R. Sims, and M. B. Denton, "Applications of Charge Transfer Devices in Spectroscopy," Anal. Chem. 60, 327A–335 (1988).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (2)

Combust. Sci. Tech. (1)

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, "Unburned Gas Temperatures in an Internal Combustion Engine. I. CARS Temperature Measurements," Combust. Sci. Tech. 55, 41–61 (1987).
[CrossRef]

J. Appl. Phys. (1)

W. P. Acker, B. Yip, D. H. Leach, and R. K. Chang, "The Use of a Charge-Coupled Device and Position Sensitive Resistive Anode Detector for Multiorder Raman Spectroscopy from Silicon," J. Appl. Phys. 64, 2263–2270 (1988).
[CrossRef]

Other (4)

I. van Cruyningen, P. H. Paul, and R. K. Hanson, "Turbulent Flowfield Interpretation Through Processing of PLIF Images," Paper 8A-110, Western States Section/The Combustion Institute, Fall Meeting, Honolulu, Hawaii, Nov. (1987).

W. L. Flower, Sandia National Laboratories, Unpublished Results.

R. K. Chang and M. B. Long, "Optical Multichannel Detection," in Light Scattering in Solids M. Cardona and G. Guntherodt, Eds. (Springer-Verlag, New York, 1982), p. 179.
[CrossRef]

A. C. Eckbreth," Laser Diagnostics for Combustion Temperature and Species," A. K. Gupta and D. G. Lilley, Eds. (Abacus Press, Cambridge, MA, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the broadband CARS experimental arrangement for performing temperature measurements in a Sandia research engine.

Fig. 2
Fig. 2

3-D plot of a broadband CARS spectrum of nitrogen obtained using a CCD camera. A conventional intensity vs wavelength plot of this spectrum is shown in Fig. 6.

Fig. 3
Fig. 3

Room air nitrogen CARS spectra taken with a) the IPDA and b) the CCD camera. The experimental spectra are represented with solid lines and theoretical fits are shown using dotted lines. Both spectra were taken using laser energies of ∼12 mJ (total) at 532 nm and 1 mJ at 607 nm and were the average of 200 laser shots.

Fig. 4
Fig. 4

Comparison of the instrument functions for a) the IPDA and b) the CCD camera. The instrument functions for each detector system were determined from theoretical fits of the room air spectra shown in Fig. 3. The parameters used in fitting the instrument functions were: Gaussian FWHM = 0.70 cm−1 and 0.30 cm−1, Gaussian area = 85% and 90%, Lorentzian FWHM = 3.4 cm−1 and 1.0 cm−1, and Lorentzian area = 15% and 10% for the IPDA and the CCD camera respectively.

Fig. 5
Fig. 5

Single shot room air nitrogen CARS spectrum acquired using the CCD camera. The CARS intensity is displayed in the absolute number of counts. Laser energies of 30 mJ (total) at 532 and 3.5 mJ at 607 nm were used for this single shot spectrum.

Fig. 6
Fig. 6

Nitrogen CARS spectrum acquired from the burned gas region of the Sandia research engine. The spectrum was integrated for 5 min (480 laser shots) on the CCD detector. The experimental data are represented by the solid line and a theoretical fit using a temperature of 2310 K is shown using a dotted line. Laser energies of 10 mJ (total) at 532 nm and 1.0 mJ at 607 nm were used to obtain this spectrum.

Metrics