Abstract

A new polarization modulation Zeeman method combined with high resolution Fourier transform spectroscopy is described. It selectively detects the paramagnetic species produced in a plasma under a constant magnetic field. The polarizing optics is convenient and easily covers wide spectral ranges. NO absorption and N2O, NO emission spectra are reported. With a magnetic field of the order of 560 G and a 40-cm long discharge tube, the P and R lines of the 1—0 band of NO around 5 μm are observed up to J = 28.5 whereas the much more intense N2O lines are not detected. Unexplained line shapes of the first Q2 lines of NO are reported. A comparison with a recent frequency modulation Zeeman method coupled with high resolution Fourier transform spectroscopy is given.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, Technical Digest of Topical Meeting on High Resolution Transform Spectroscopy (Optical Society of America, Washington, DC, 1989).
  2. P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
    [CrossRef]
  3. P. Jensen, W. P. Kraemer, “A Variational Calculation of the Rotation–Vibration Energies for CNC+ and CCN+,” J. Mol. Spectrosc. 129, 216–222 (1988).
    [CrossRef]
  4. G. Guelachvili, “Selective Detection of Paramagnetic Species by High-Information Fourier-Transform Spectrometry,” J. Opt. Soc. Am. B 3, 1718–1721 (1986).
    [CrossRef]
  5. M. Elhanine, R. Farrenq, G. Guelachvili, “Zeeman-Modulation Fourier Transform Spectroscopy,” Mikrochim. Acta (Wien) II, 265–269 (1988).
    [CrossRef]
  6. C. M. Deeley, J. W. C. Johns, Herzberg Institute of Astrophysics; private communication.
  7. For more details see M. Elhanine, “Spectroscopies sélectives par transformation de fourier et laser à diodes. Etude infrarouge de molécules transitoires” Thèse N°970 Orsay (1989).
  8. G. Guelachvili, “High-Accuracy Doppler-Limited 106 Samples Fourier Transform Spectroscopy,” Appl. Opt. 17, 1322–1326 (1978).
    [CrossRef] [PubMed]
  9. J. T. Hougen, “The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules,” Natl. Bur. Stand. U.S. Monogr.115 (1970).
  10. H. E. Radford, “Microwave Zeeman Effect of Free Hydroxyl Radicals,” Phys. Rev. 122, 114–130 (1961).
    [CrossRef]
  11. R. L. Brown, H. E. Radford, “L-Uncoupling Effects on the Electron-Paramagnetic-Resonance Spectra of 14N16O and 15N16O,” Phys. Rev. 147, 6–12 (1966).
    [CrossRef]
  12. C. Amiot, R. Bacis, G. Guelachvili, “Infrared Study of the X2П υ = 0,1,2 Levels of 14N16O. Preliminary Results on the υ = 0,1 Levels of 14N17O, 14N18O and 15N16O,” Can. J. Phys. 56, 251– 265 (1978).
    [CrossRef]
  13. L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).
  14. W. Hermann, W. Rohrbeck, W. Urban, “Lineshape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).
  15. C. C. Lin, M. Mizushima, “Theory of the Hyperfine Structure of the NO Molecule. II. Errata and Some Additional Discussions,” Phys. Rev. 100, 1726–1730 (1955).
    [CrossRef]
  16. M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
    [CrossRef]
  17. R. J. Saykally, “Infrared Laser Spectroscopy of Molecular Ions,” Science 329, 157–161 (1988).
    [CrossRef]

1989 (1)

For more details see M. Elhanine, “Spectroscopies sélectives par transformation de fourier et laser à diodes. Etude infrarouge de molécules transitoires” Thèse N°970 Orsay (1989).

1988 (5)

P. Jensen, W. P. Kraemer, “A Variational Calculation of the Rotation–Vibration Energies for CNC+ and CCN+,” J. Mol. Spectrosc. 129, 216–222 (1988).
[CrossRef]

M. Elhanine, R. Farrenq, G. Guelachvili, “Zeeman-Modulation Fourier Transform Spectroscopy,” Mikrochim. Acta (Wien) II, 265–269 (1988).
[CrossRef]

L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).

M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
[CrossRef]

R. J. Saykally, “Infrared Laser Spectroscopy of Molecular Ions,” Science 329, 157–161 (1988).
[CrossRef]

1986 (2)

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

G. Guelachvili, “Selective Detection of Paramagnetic Species by High-Information Fourier-Transform Spectrometry,” J. Opt. Soc. Am. B 3, 1718–1721 (1986).
[CrossRef]

1980 (1)

W. Hermann, W. Rohrbeck, W. Urban, “Lineshape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).

1978 (2)

C. Amiot, R. Bacis, G. Guelachvili, “Infrared Study of the X2П υ = 0,1,2 Levels of 14N16O. Preliminary Results on the υ = 0,1 Levels of 14N17O, 14N18O and 15N16O,” Can. J. Phys. 56, 251– 265 (1978).
[CrossRef]

G. Guelachvili, “High-Accuracy Doppler-Limited 106 Samples Fourier Transform Spectroscopy,” Appl. Opt. 17, 1322–1326 (1978).
[CrossRef] [PubMed]

1970 (1)

J. T. Hougen, “The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules,” Natl. Bur. Stand. U.S. Monogr.115 (1970).

1966 (1)

R. L. Brown, H. E. Radford, “L-Uncoupling Effects on the Electron-Paramagnetic-Resonance Spectra of 14N16O and 15N16O,” Phys. Rev. 147, 6–12 (1966).
[CrossRef]

1961 (1)

H. E. Radford, “Microwave Zeeman Effect of Free Hydroxyl Radicals,” Phys. Rev. 122, 114–130 (1961).
[CrossRef]

1955 (1)

C. C. Lin, M. Mizushima, “Theory of the Hyperfine Structure of the NO Molecule. II. Errata and Some Additional Discussions,” Phys. Rev. 100, 1726–1730 (1955).
[CrossRef]

Amiot, C.

C. Amiot, R. Bacis, G. Guelachvili, “Infrared Study of the X2П υ = 0,1,2 Levels of 14N16O. Preliminary Results on the υ = 0,1 Levels of 14N17O, 14N18O and 15N16O,” Can. J. Phys. 56, 251– 265 (1978).
[CrossRef]

Bacis, R.

C. Amiot, R. Bacis, G. Guelachvili, “Infrared Study of the X2П υ = 0,1,2 Levels of 14N16O. Preliminary Results on the υ = 0,1 Levels of 14N17O, 14N18O and 15N16O,” Can. J. Phys. 56, 251– 265 (1978).
[CrossRef]

Brown, R. L.

R. L. Brown, H. E. Radford, “L-Uncoupling Effects on the Electron-Paramagnetic-Resonance Spectra of 14N16O and 15N16O,” Phys. Rev. 147, 6–12 (1966).
[CrossRef]

Chollet, P.

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

Deeley, C. M.

C. M. Deeley, J. W. C. Johns, Herzberg Institute of Astrophysics; private communication.

Elhanine, M.

For more details see M. Elhanine, “Spectroscopies sélectives par transformation de fourier et laser à diodes. Etude infrarouge de molécules transitoires” Thèse N°970 Orsay (1989).

M. Elhanine, R. Farrenq, G. Guelachvili, “Zeeman-Modulation Fourier Transform Spectroscopy,” Mikrochim. Acta (Wien) II, 265–269 (1988).
[CrossRef]

M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
[CrossRef]

Farrenq, R.

M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
[CrossRef]

M. Elhanine, R. Farrenq, G. Guelachvili, “Zeeman-Modulation Fourier Transform Spectroscopy,” Mikrochim. Acta (Wien) II, 265–269 (1988).
[CrossRef]

Freedman, T. B.

L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).

Gressier, P.

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

Guelachvili, G.

M. Elhanine, R. Farrenq, G. Guelachvili, “Zeeman-Modulation Fourier Transform Spectroscopy,” Mikrochim. Acta (Wien) II, 265–269 (1988).
[CrossRef]

M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
[CrossRef]

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

G. Guelachvili, “Selective Detection of Paramagnetic Species by High-Information Fourier-Transform Spectrometry,” J. Opt. Soc. Am. B 3, 1718–1721 (1986).
[CrossRef]

G. Guelachvili, “High-Accuracy Doppler-Limited 106 Samples Fourier Transform Spectroscopy,” Appl. Opt. 17, 1322–1326 (1978).
[CrossRef] [PubMed]

C. Amiot, R. Bacis, G. Guelachvili, “Infrared Study of the X2П υ = 0,1,2 Levels of 14N16O. Preliminary Results on the υ = 0,1 Levels of 14N17O, 14N18O and 15N16O,” Can. J. Phys. 56, 251– 265 (1978).
[CrossRef]

Hermann, W.

W. Hermann, W. Rohrbeck, W. Urban, “Lineshape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).

Hougen, J. T.

J. T. Hougen, “The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules,” Natl. Bur. Stand. U.S. Monogr.115 (1970).

Jensen, P.

P. Jensen, W. P. Kraemer, “A Variational Calculation of the Rotation–Vibration Energies for CNC+ and CCN+,” J. Mol. Spectrosc. 129, 216–222 (1988).
[CrossRef]

Johns, J. W. C.

C. M. Deeley, J. W. C. Johns, Herzberg Institute of Astrophysics; private communication.

Kraemer, W. P.

P. Jensen, W. P. Kraemer, “A Variational Calculation of the Rotation–Vibration Energies for CNC+ and CCN+,” J. Mol. Spectrosc. 129, 216–222 (1988).
[CrossRef]

Lee, N. S.

L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).

Lin, C. C.

C. C. Lin, M. Mizushima, “Theory of the Hyperfine Structure of the NO Molecule. II. Errata and Some Additional Discussions,” Phys. Rev. 100, 1726–1730 (1955).
[CrossRef]

Mizushima, M.

C. C. Lin, M. Mizushima, “Theory of the Hyperfine Structure of the NO Molecule. II. Errata and Some Additional Discussions,” Phys. Rev. 100, 1726–1730 (1955).
[CrossRef]

Morillon-Chapey, M.

M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
[CrossRef]

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

Nafie, L. A.

L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).

Paterlini, G.

L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).

Radford, H. E.

R. L. Brown, H. E. Radford, “L-Uncoupling Effects on the Electron-Paramagnetic-Resonance Spectra of 14N16O and 15N16O,” Phys. Rev. 147, 6–12 (1966).
[CrossRef]

H. E. Radford, “Microwave Zeeman Effect of Free Hydroxyl Radicals,” Phys. Rev. 122, 114–130 (1961).
[CrossRef]

Rohrbeck, W.

W. Hermann, W. Rohrbeck, W. Urban, “Lineshape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).

Saykally, R. J.

R. J. Saykally, “Infrared Laser Spectroscopy of Molecular Ions,” Science 329, 157–161 (1988).
[CrossRef]

Schmitt, J. P. M.

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

Urban, W.

W. Hermann, W. Rohrbeck, W. Urban, “Lineshape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).

Appl. Opt. (1)

Appl. Phys. (1)

W. Hermann, W. Rohrbeck, W. Urban, “Lineshape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980).

Can. J. Phys. (1)

C. Amiot, R. Bacis, G. Guelachvili, “Infrared Study of the X2П υ = 0,1,2 Levels of 14N16O. Preliminary Results on the υ = 0,1 Levels of 14N17O, 14N18O and 15N16O,” Can. J. Phys. 56, 251– 265 (1978).
[CrossRef]

J. Mol. Spectrosc. (2)

M. Elhanine, R. Farrenq, G. Guelachvili, M. Morillon-Chapey, “Negative Ion SH−: The Vibration Rotation Bands Between 2200 and 2750 cm−1 by Fourier Transform Spectroscopy,” J. Mol. Spectrosc. 129, 240–242 (1988).
[CrossRef]

P. Jensen, W. P. Kraemer, “A Variational Calculation of the Rotation–Vibration Energies for CNC+ and CCN+,” J. Mol. Spectrosc. 129, 216–222 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am.B (1)

P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J. P. M. Schmitt, “High-Information Infrared Spectroscopy of Unstable Molecules,” J. Opt. Soc. Am.B 3, 687–695 (1986).
[CrossRef]

Mikrochim. Acta (Wien) (2)

L. A. Nafie, N. S. Lee, G. Paterlini, T. B. Freedman, “Polarization Modulation Fourier Transform Infrared Spectroscopy,” Mikrochim. Acta (Wien) III, 93–104 (1988).

M. Elhanine, R. Farrenq, G. Guelachvili, “Zeeman-Modulation Fourier Transform Spectroscopy,” Mikrochim. Acta (Wien) II, 265–269 (1988).
[CrossRef]

Natl. Bur. Stand. U.S. Monogr. (1)

J. T. Hougen, “The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules,” Natl. Bur. Stand. U.S. Monogr.115 (1970).

Phys. Rev. (3)

H. E. Radford, “Microwave Zeeman Effect of Free Hydroxyl Radicals,” Phys. Rev. 122, 114–130 (1961).
[CrossRef]

R. L. Brown, H. E. Radford, “L-Uncoupling Effects on the Electron-Paramagnetic-Resonance Spectra of 14N16O and 15N16O,” Phys. Rev. 147, 6–12 (1966).
[CrossRef]

C. C. Lin, M. Mizushima, “Theory of the Hyperfine Structure of the NO Molecule. II. Errata and Some Additional Discussions,” Phys. Rev. 100, 1726–1730 (1955).
[CrossRef]

Science (1)

R. J. Saykally, “Infrared Laser Spectroscopy of Molecular Ions,” Science 329, 157–161 (1988).
[CrossRef]

Thèse N°970 Orsay (1)

For more details see M. Elhanine, “Spectroscopies sélectives par transformation de fourier et laser à diodes. Etude infrarouge de molécules transitoires” Thèse N°970 Orsay (1989).

Other (2)

See, for example, Technical Digest of Topical Meeting on High Resolution Transform Spectroscopy (Optical Society of America, Washington, DC, 1989).

C. M. Deeley, J. W. C. Johns, Herzberg Institute of Astrophysics; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Right and left circular Zeeman radiations are linearly polarized after passing through the fixed λ/4 plate. The rotating analyzer distinctly modulates each intensity. The corresponding spectral profiles will be restituted with two different signs. If the right and left circular transitions are superimposed, they cancel each other. As a consequence, the diamagnetic transitions are not detected.

Fig. 2
Fig. 2

Absorption spectra over ∼1 cm−1. The polarization spectrum makes better use of the magnetic field applied to the cell. Its recording time is six times shorter.

Fig. 3
Fig. 3

Emission of the N2O discharge recorded with the usual path difference modulation method essentially reveals N2O and NO emission spectra. Selected parts are shown in Figs. 46.

Fig. 4
Fig. 4

Upper trace is high resolution part A of Fig. 3. Line shapes are different in the polarization spectrum which has the same SNR and does not show the Ω = 1/2 lines.

Fig. 5
Fig. 5

Lower trace is high resolution part C of Fig. 3. Although these N2O lines are the most intense, they are not detected in the selective spectrum, since they are not field sensitive.

Fig. 6
Fig. 6

Lower trace is high resolution part B of Fig. 3. Both Ω = 1/2 and Ω = 3/2 lines are detected in the selective spectrum with a degraded SNR.

Fig. 7
Fig. 7

Calculated positions and intensities of the Zeeman components of the two R(2.5) 1—0 lines selectively detected. Each of these components is dressed in a sinc2 profile to get the lower calculated spectrum.

Fig. 8
Fig. 8

Observed and calculated NO lines profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I 0 / 2 × ( 1 sin 2 ω t ) , I 0 / 2 × ( 1 + sin 2 ω t ) ,

Metrics