Abstract

Less than 0.035% reflected optical power from an InP/InGaAs/InP photodetector structure was achieved at wavelengths of 1300 nm and 1550 nm for a 24-μm diameter spot size of unpolarized light. A triangular groove surface relief grating and an antireflection overcoating were used to achieve this performance level. The grating was fabricated in the InP top layer by a novel process based on an ion mill technique. This approach may be used to improve the optical return loss of high speed optical receivers. The reflected power measurements were made using a system of N.A. = 0.05 with an objective lens whose optical axis was normal to the grating.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with a −3dB Bandwidth in Excess of 18GHz,” IEEE Trans. Electron Devices ED-34, 938–940 (1987).
    [CrossRef]
  2. S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
    [CrossRef]
  3. G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers, (Van Nostrand Reinhold, New York, 1986).
    [CrossRef]
  4. R. W. Tkach, A. R. Chraplyvy, “Linewidth Broadening and Mode Splitting Due to Weak Feedback in Single-Frequency 1.5μm Lasers,” Electron. Lett. 21, 1081–1083 (1985).
    [CrossRef]
  5. T. K. Gaylord, M. G. Moharam, “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE 73, 894–937 (1985).
    [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, “Diffraction Analysis of Dielectric Surface-Relief Gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982);erratum 73, 411–411 (1983).
    [CrossRef]
  7. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-Reflectivity High Spatial-Frequency Rectangular Groove Dielectric Surface-Relief Gratings,” Appl. Opt. 25, 4562–4567 (1986).
    [CrossRef] [PubMed]
  8. R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef] [PubMed]
  9. D. M. Braun, “Design of Single Layer Antireflection Coatings for InP/In0.53Ga0.47As/InP Photodetectors for the 1200–1600-nm Wavelength Range,” Appl. Opt. 27, 2006–2011 (1988).
    [CrossRef] [PubMed]
  10. W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
    [CrossRef]
  11. O. Wada, “Ion-Beam Etching of InP and Its Application to the Fabrication of High Radiance InGaAsP/InP Light Emitting Diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
    [CrossRef]
  12. R. S. Williams, R. J. Nelson, A. R. Schlier, “Depth Resolution Degradation of Sputter-Profiled InP/InxGa1−xAsyP1−y Interfaces Caused by Cone Formation,” Appl. Phys. Lett. 36, 827–829 (1980).
    [CrossRef]
  13. S. Adachi, H. Kawaguchi, “Chemical Etching Characteristics of (001) InP,” J. Electrochem. Soc. 128, 1342–1349 (1981).
    [CrossRef]
  14. S. Adachi, Y. Noguchi, H. Kawaguchi, “Chemical Etching of InGaAs/InP DH Wafer,” J. Electrochem. Soc. 129, 1053–1062 (1982).
    [CrossRef]
  15. L. A. Coldren, K. Furuya, B. I. Miller, “On the Formation of Planar-Etched Facets in GaInAsP/InP Double Heterostructures,” J. Electrochem. Soc. 130, 1918–1926 (1983).
    [CrossRef]
  16. D. M. Braun, K. W. Leyde, “Optical Reflection Measurement System Using a Swept Modulation Frequency Technique,” Opt. Eng. 28, 286–289 (1989).
    [CrossRef]
  17. J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633–635 (1986).
    [CrossRef]
  18. J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812–814 (1985).
    [CrossRef]

1989 (1)

D. M. Braun, K. W. Leyde, “Optical Reflection Measurement System Using a Swept Modulation Frequency Technique,” Opt. Eng. 28, 286–289 (1989).
[CrossRef]

1988 (1)

1987 (1)

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with a −3dB Bandwidth in Excess of 18GHz,” IEEE Trans. Electron Devices ED-34, 938–940 (1987).
[CrossRef]

1986 (3)

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633–635 (1986).
[CrossRef]

T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-Reflectivity High Spatial-Frequency Rectangular Groove Dielectric Surface-Relief Gratings,” Appl. Opt. 25, 4562–4567 (1986).
[CrossRef] [PubMed]

1985 (3)

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812–814 (1985).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, “Linewidth Broadening and Mode Splitting Due to Weak Feedback in Single-Frequency 1.5μm Lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

1984 (2)

W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
[CrossRef]

O. Wada, “Ion-Beam Etching of InP and Its Application to the Fabrication of High Radiance InGaAsP/InP Light Emitting Diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
[CrossRef]

1983 (2)

R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220–3228 (1983).
[CrossRef] [PubMed]

L. A. Coldren, K. Furuya, B. I. Miller, “On the Formation of Planar-Etched Facets in GaInAsP/InP Double Heterostructures,” J. Electrochem. Soc. 130, 1918–1926 (1983).
[CrossRef]

1982 (2)

M. G. Moharam, T. K. Gaylord, “Diffraction Analysis of Dielectric Surface-Relief Gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982);erratum 73, 411–411 (1983).
[CrossRef]

S. Adachi, Y. Noguchi, H. Kawaguchi, “Chemical Etching of InGaAs/InP DH Wafer,” J. Electrochem. Soc. 129, 1053–1062 (1982).
[CrossRef]

1981 (1)

S. Adachi, H. Kawaguchi, “Chemical Etching Characteristics of (001) InP,” J. Electrochem. Soc. 128, 1342–1349 (1981).
[CrossRef]

1980 (1)

R. S. Williams, R. J. Nelson, A. R. Schlier, “Depth Resolution Degradation of Sputter-Profiled InP/InxGa1−xAsyP1−y Interfaces Caused by Cone Formation,” Appl. Phys. Lett. 36, 827–829 (1980).
[CrossRef]

Adachi, S.

S. Adachi, Y. Noguchi, H. Kawaguchi, “Chemical Etching of InGaAs/InP DH Wafer,” J. Electrochem. Soc. 129, 1053–1062 (1982).
[CrossRef]

S. Adachi, H. Kawaguchi, “Chemical Etching Characteristics of (001) InP,” J. Electrochem. Soc. 128, 1342–1349 (1981).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers, (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Baird, W. E.

Bowers, J. E.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633–635 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812–814 (1985).
[CrossRef]

Braun, D. M.

D. M. Braun, K. W. Leyde, “Optical Reflection Measurement System Using a Swept Modulation Frequency Technique,” Opt. Eng. 28, 286–289 (1989).
[CrossRef]

D. M. Braun, “Design of Single Layer Antireflection Coatings for InP/In0.53Ga0.47As/InP Photodetectors for the 1200–1600-nm Wavelength Range,” Appl. Opt. 27, 2006–2011 (1988).
[CrossRef] [PubMed]

Burrus, C. A.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633–635 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812–814 (1985).
[CrossRef]

Carey, K. W.

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with a −3dB Bandwidth in Excess of 18GHz,” IEEE Trans. Electron Devices ED-34, 938–940 (1987).
[CrossRef]

Case, S. K.

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, “Linewidth Broadening and Mode Splitting Due to Weak Feedback in Single-Frequency 1.5μm Lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

Coldren, L. A.

L. A. Coldren, K. Furuya, B. I. Miller, “On the Formation of Planar-Etched Facets in GaInAsP/InP Double Heterostructures,” J. Electrochem. Soc. 130, 1918–1926 (1983).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers, (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Enger, R. C.

Furuya, K.

L. A. Coldren, K. Furuya, B. I. Miller, “On the Formation of Planar-Etched Facets in GaInAsP/InP Double Heterostructures,” J. Electrochem. Soc. 130, 1918–1926 (1983).
[CrossRef]

Gaylord, T. K.

Grote, N.

W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
[CrossRef]

Katzschner, W.

W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
[CrossRef]

Kawaguchi, H.

S. Adachi, Y. Noguchi, H. Kawaguchi, “Chemical Etching of InGaAs/InP DH Wafer,” J. Electrochem. Soc. 129, 1053–1062 (1982).
[CrossRef]

S. Adachi, H. Kawaguchi, “Chemical Etching Characteristics of (001) InP,” J. Electrochem. Soc. 128, 1342–1349 (1981).
[CrossRef]

Kolner, B. H.

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with a −3dB Bandwidth in Excess of 18GHz,” IEEE Trans. Electron Devices ED-34, 938–940 (1987).
[CrossRef]

Kuwatsuka, H.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
[CrossRef]

Leyde, K. W.

D. M. Braun, K. W. Leyde, “Optical Reflection Measurement System Using a Swept Modulation Frequency Technique,” Opt. Eng. 28, 286–289 (1989).
[CrossRef]

Löffler, R.

W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
[CrossRef]

McCoy, R. J.

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812–814 (1985).
[CrossRef]

Mikawa, T.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
[CrossRef]

Miller, B. I.

L. A. Coldren, K. Furuya, B. I. Miller, “On the Formation of Planar-Etched Facets in GaInAsP/InP Double Heterostructures,” J. Electrochem. Soc. 130, 1918–1926 (1983).
[CrossRef]

Mitschke, F.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633–635 (1986).
[CrossRef]

Miura, S.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
[CrossRef]

Moharam, M. G.

Nelson, R. J.

R. S. Williams, R. J. Nelson, A. R. Schlier, “Depth Resolution Degradation of Sputter-Profiled InP/InxGa1−xAsyP1−y Interfaces Caused by Cone Formation,” Appl. Phys. Lett. 36, 827–829 (1980).
[CrossRef]

Noguchi, Y.

S. Adachi, Y. Noguchi, H. Kawaguchi, “Chemical Etching of InGaAs/InP DH Wafer,” J. Electrochem. Soc. 129, 1053–1062 (1982).
[CrossRef]

Schlier, A. R.

R. S. Williams, R. J. Nelson, A. R. Schlier, “Depth Resolution Degradation of Sputter-Profiled InP/InxGa1−xAsyP1−y Interfaces Caused by Cone Formation,” Appl. Phys. Lett. 36, 827–829 (1980).
[CrossRef]

Steckenborn, A.

W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, “Linewidth Broadening and Mode Splitting Due to Weak Feedback in Single-Frequency 1.5μm Lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

Wada, O.

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
[CrossRef]

O. Wada, “Ion-Beam Etching of InP and Its Application to the Fabrication of High Radiance InGaAsP/InP Light Emitting Diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
[CrossRef]

Wang, S. Y.

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with a −3dB Bandwidth in Excess of 18GHz,” IEEE Trans. Electron Devices ED-34, 938–940 (1987).
[CrossRef]

Williams, R. S.

R. S. Williams, R. J. Nelson, A. R. Schlier, “Depth Resolution Degradation of Sputter-Profiled InP/InxGa1−xAsyP1−y Interfaces Caused by Cone Formation,” Appl. Phys. Lett. 36, 827–829 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar, Embedded InP/GaInAs p-i-n Photodiode with Very High-Speed Response Characteristics,” Appl. Phys. Lett. 49, 1522–1524 (1986).
[CrossRef]

R. S. Williams, R. J. Nelson, A. R. Schlier, “Depth Resolution Degradation of Sputter-Profiled InP/InxGa1−xAsyP1−y Interfaces Caused by Cone Formation,” Appl. Phys. Lett. 36, 827–829 (1980).
[CrossRef]

W. Katzschner, A. Steckenborn, R. Löffler, N. Grote, “Ion Beam Milling of InP with an Ar/O2-Gas Mixture,” Appl. Phys. Lett. 44, 352–354 (1984).
[CrossRef]

Electron. Lett. (3)

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-Waveguide-Mounted InGaAs Photodetectors,” Electron. Lett. 22, 633–635 (1986).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, “InGaAs PIN Photodetectors with Modulation Response to Millimetre Wavelengths,” Electron. Lett. 21, 812–814 (1985).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, “Linewidth Broadening and Mode Splitting Due to Weak Feedback in Single-Frequency 1.5μm Lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with a −3dB Bandwidth in Excess of 18GHz,” IEEE Trans. Electron Devices ED-34, 938–940 (1987).
[CrossRef]

J. Electrochem. Soc. (4)

O. Wada, “Ion-Beam Etching of InP and Its Application to the Fabrication of High Radiance InGaAsP/InP Light Emitting Diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
[CrossRef]

S. Adachi, H. Kawaguchi, “Chemical Etching Characteristics of (001) InP,” J. Electrochem. Soc. 128, 1342–1349 (1981).
[CrossRef]

S. Adachi, Y. Noguchi, H. Kawaguchi, “Chemical Etching of InGaAs/InP DH Wafer,” J. Electrochem. Soc. 129, 1053–1062 (1982).
[CrossRef]

L. A. Coldren, K. Furuya, B. I. Miller, “On the Formation of Planar-Etched Facets in GaInAsP/InP Double Heterostructures,” J. Electrochem. Soc. 130, 1918–1926 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

D. M. Braun, K. W. Leyde, “Optical Reflection Measurement System Using a Swept Modulation Frequency Technique,” Opt. Eng. 28, 286–289 (1989).
[CrossRef]

Proc. IEEE (1)

T. K. Gaylord, M. G. Moharam, “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Other (1)

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers, (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of the triangular groove surface relief grating on InP/InGaAs/InP material, where Λ is the grating period, d is the groove depth, t is the InP top layer thickness, and α and β are the side angles. A conformal antireflection coating (ARC) is also shown.

Fig. 2
Fig. 2

Diagram of a triangular groove surface relief grating of 20° side angles with ray tracing for the special case of specular reflection. (a) The incident optical power from A–B that is reflected from the InP/InGaAs interface encounters the incident grating face and is internally reflected, (b) The incident optical power from C–A that is reflected from the InP/InGaAs interface encounters the adjacent face and is diffracted at normal incidence.

Fig. 3
Fig. 3

Diagram identifying the ion mill angles (α′ and β′) and directions. The shaded InP area is removed during the ion mill process leaving a triangular groove surface relief grating.

Fig. 4
Fig. 4

Scanning electron microscope cross section image of the triangular groove structure formed by the ion mill process. The cleaved plane orientation is (011) and the micrograph was taken at an angle of 9° with respect to normal incidence to the cleaved plane. The InP/InGaAs interface is evident as the light to dark transition near the bottom of the micrograph.

Fig. 5
Fig. 5

Scanning electron microscope cross-section image of the triangular groove structure formed by the wet chemical etch process. The cleaved plane orientation is ( 0 1 ̅ 1 ) and the micrograph was taken at an angle of 9° with respect to normal incidence to the cleaved plane. The InP/InGaAs interface is evident as the light to dark transition near the bottom of the micrograph.

Fig. 6
Fig. 6

Plot of percent of the incident optical power at λ = 1300 nm reflected from the grating versus metric groove depth for samples A, B, and C.

Fig. 7
Fig. 7

Plot of percent of the incident optical power at λ = 1550 nm reflected from the grating versus metric groove depth for samples A, B, and C.

Fig. 8
Fig. 8

Plot of percent of the incident optical power reflected versus metric groove depth for sample D. Measurements at λ = 1300 nm (○) and λ = 1550 nm (□) are shown.

Fig. 9
Fig. 9

Plot of percent of the incident optical power reflected versus metric groove depth for sample E. Measurements at λ = 1300 nm (○) and λ = 1550 nm (□) are shown.

Fig. 10
Fig. 10

Scanning electron microscope image of a mesa photodetector with a triangular groove surface relief grating fabricated in the detector active area.

Tables (3)

Tables Icon

Table I Measurements of Reflected Optical Power from InP Substrates with Triangular Groove Diffraction Gratings

Tables Icon

Table II Measurements of Reflected Optical Power from InP/InGaAs/InP OMVPE Grown Epitaxial Material with Triangular Groove Diffraction Gratings

Tables Icon

Table III ARC Refractive Index and Thickness

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ORL = 10 log ( P i P r ) , ( dB )
N . A . < ½ tan ( α ) ,
P r l = P lens P i 100 , ( percent )
Λ = 750 + 700 ( ctn α + ctn β ) .

Metrics