Abstract

The effect of thermal and concentration boundary layers on experimental data must be well understood for a successful diagnostic measurement of quasi-uniform high-temperature gases using line-of-sight absorption spectroscopy. In this paper, an energy–temperature curve is proposed to assist in selection of candidate absorption lines. Two techniques, the effective absorption path length method and the direct curve–fit method, are proposed to extract absolute concentrations from absorption data obtained in the presence of boundary layers.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Ouyang, P. L. Varghese, “A Reliable and Efficient Program for Fitting Galatry and Voigt Profiles to Spectral Data on Multiple Lines,” Appl. Opt, 28, 1538–1545 (1989).
    [CrossRef] [PubMed]
  2. X. Ouyang, P. L. Varghese, D. S. Cline, “Simultaneous Determination of Temperature and Species Concentrations of High-Temperature Gases Using Tunable Laser Absorption Spectroscopy,” in Proceedings of the Fourth International Science Conference, Atlanta, Oct. 1988.
  3. R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477–2480 (1978).
    [CrossRef] [PubMed]
  4. P. K. Falcone, Absorption Spectroscopy of Combustion Gases Using a Tunable Diode Laser, HTGL Report No. 121 (Stanford U., 1981).
  5. S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
    [CrossRef]
  6. S. S. Penner, Quantitative Molecular Spectroscopy and Radiative Transfer (Addison-Wesley, Reading, MA, 1959).
  7. P. L. Varghese, R. K. Hanson, “Collisional Narrowing Effects on Spectral Line Shapes Measured at High Resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef] [PubMed]
  8. J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and its Derivatives,” J. Quant. Spectroc. Radiat. Transfer 21, 309–313 (1979).
    [CrossRef]
  9. S. A. Gearhart, M. E. Thomas, “Evaluation of a Temperature Remote Sensing Technique,” Appl. Opt. 27, 3630–3637 (1988).
    [CrossRef] [PubMed]

1989 (1)

X. Ouyang, P. L. Varghese, “A Reliable and Efficient Program for Fitting Galatry and Voigt Profiles to Spectral Data on Multiple Lines,” Appl. Opt, 28, 1538–1545 (1989).
[CrossRef] [PubMed]

1988 (1)

1984 (1)

1981 (1)

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

1979 (1)

J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and its Derivatives,” J. Quant. Spectroc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

1978 (1)

Cline, D. S.

X. Ouyang, P. L. Varghese, D. S. Cline, “Simultaneous Determination of Temperature and Species Concentrations of High-Temperature Gases Using Tunable Laser Absorption Spectroscopy,” in Proceedings of the Fourth International Science Conference, Atlanta, Oct. 1988.

Falcone, P. K.

R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

P. K. Falcone, Absorption Spectroscopy of Combustion Gases Using a Tunable Diode Laser, HTGL Report No. 121 (Stanford U., 1981).

Gearhart, S. A.

Hanson, R. K.

Humlicek, J.

J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and its Derivatives,” J. Quant. Spectroc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Ouyang, X.

X. Ouyang, P. L. Varghese, “A Reliable and Efficient Program for Fitting Galatry and Voigt Profiles to Spectral Data on Multiple Lines,” Appl. Opt, 28, 1538–1545 (1989).
[CrossRef] [PubMed]

X. Ouyang, P. L. Varghese, D. S. Cline, “Simultaneous Determination of Temperature and Species Concentrations of High-Temperature Gases Using Tunable Laser Absorption Spectroscopy,” in Proceedings of the Fourth International Science Conference, Atlanta, Oct. 1988.

Penner, S. S.

S. S. Penner, Quantitative Molecular Spectroscopy and Radiative Transfer (Addison-Wesley, Reading, MA, 1959).

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Thomas, M. E.

Varghese, P. L.

X. Ouyang, P. L. Varghese, “A Reliable and Efficient Program for Fitting Galatry and Voigt Profiles to Spectral Data on Multiple Lines,” Appl. Opt, 28, 1538–1545 (1989).
[CrossRef] [PubMed]

P. L. Varghese, R. K. Hanson, “Collisional Narrowing Effects on Spectral Line Shapes Measured at High Resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef] [PubMed]

X. Ouyang, P. L. Varghese, D. S. Cline, “Simultaneous Determination of Temperature and Species Concentrations of High-Temperature Gases Using Tunable Laser Absorption Spectroscopy,” in Proceedings of the Fourth International Science Conference, Atlanta, Oct. 1988.

Appl. Opt (1)

X. Ouyang, P. L. Varghese, “A Reliable and Efficient Program for Fitting Galatry and Voigt Profiles to Spectral Data on Multiple Lines,” Appl. Opt, 28, 1538–1545 (1989).
[CrossRef] [PubMed]

Appl. Opt. (3)

Combust. Sci. Technol. (1)

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

J. Quant. Spectroc. Radiat. Transfer (1)

J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and its Derivatives,” J. Quant. Spectroc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Other (3)

P. K. Falcone, Absorption Spectroscopy of Combustion Gases Using a Tunable Diode Laser, HTGL Report No. 121 (Stanford U., 1981).

S. S. Penner, Quantitative Molecular Spectroscopy and Radiative Transfer (Addison-Wesley, Reading, MA, 1959).

X. Ouyang, P. L. Varghese, D. S. Cline, “Simultaneous Determination of Temperature and Species Concentrations of High-Temperature Gases Using Tunable Laser Absorption Spectroscopy,” in Proceedings of the Fourth International Science Conference, Atlanta, Oct. 1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Temperature distribution along the absorption path used in the sample calculations (Figs. 2 and 3).

Fig. 2
Fig. 2

Synthetic data for CO absorption of line (υ′ = 1, J′ = 1 ← υ″ = 0, J′ = 0) in the post-flame gas of a 10-cm flat-flame burner at atmosphere pressure. (A) Line strength distribution, (B) Line-of-sight absorption, (C) Integrated line shape.

Fig. 3
Fig. 3

Synthetic data for CO absorption of line (υ′ = 2, J′ = 25 ← υ″ = 1, J″ = 24) in the post-flame gas of a 10-cm flat-flame burner: (A) Line strength distribution, (B) Line-of-sight absorption, (C) Integrated line shape.

Fig. 4
Fig. 4

E(T) curve of CO.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

F ( υ ) = ln [ τ ( υ ) ] = ln ( I 0 ( υ ) I ( υ ) ) = i j 0 L S i j p j ϕ ( υ ) d ξ ,
β = 0 ln [ τ ( υ ) ] d υ = 0 L Spd ξ .
Ψ ( υ ) = 1 β 0 L S p ϕ ( υ ) d ξ .
ϕ ( υ ) = 1 π V ( υ υ 0 , y ) ,
S ( T ) = S ( T 0 ) Q ( T 0 ) ( T ) T 0 T exp [ h c E k ( 1 T 0 1 T ) ] ,
1 S d S d T = h c E k T 2 1 T Q d ( T Q ) d T .
E ( T ) = k h c T Q d ( T Q ) d T .
Q = k T h c B 0 1 1 exp ( h c υ 0 / k T ) ,
E ( T ) = 2 k h c T + υ 0 exp ( h c υ 0 / k T ) 1 exp ( h c υ 0 / k T ) .
0 δ S d ξ = S 0 δ S b S 0 ξ d S ,
δ β = β 0 β = S b S 0 ξ d S = T b T 0 ξ d S d T d T ,
δ β = h c k T b T 0 ξ S T 2 ( E E ( T ) ) d T .
T T 0 = f 1 ( ξ ) ,
p j p 0 j = f 2 j ( ξ ) ,
L effj = i 0 L S ij p j d ξ i ( S ij p j ) core = i 0 L S ij f 2 j d ξ i ( S ij ) core .
p 0 j = i β ij L effj i S ij ( T ) .
τ ( υ ) = exp { i j p 0 j B π 0 L S ij f 2 j V [ υ υ oij B , Y ij ( T 0 T ( ξ ) ) n ] d ξ } + Δ ,

Metrics