Abstract

Recent improvements in silicon photodiode fabrication technology have resulted in the production of photodiodes which are stable after prolonged exposure to short wavelength radiation and which have efficiencies in the far ultraviolet close to those predicted using a value of 3.63 eV for electron–hole pair production in Si. Quantum efficiency and stability data are presented in the 6–124-eV region for several variations on the basic successful design and on devices with extremely thin silicon dioxide antireflecting/passivating layers. The results indicate that the oxide is dominant in determining many of the performance parameters and that a stable efficient far ultraviolet diode can be fabricated by careful control of the Si–SiO2 interface quality.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
    [CrossRef]
  2. R. A. Stern et al., “Ultraviolet and Extreme Ultraviolet Response of Charge-Coupled-Device Detectors,” Opt. Eng. 26, 875–883 (1987).
    [CrossRef]
  3. M. Krumrey, E. Tegeler, J. Barth, M. Krisch, F. Schafers, R. Wolf, “Schottky Type Photodiodes as Detectors in the VUV and Soft X-Ray Range,” Appl. Opt. 27, 4336–4341 (1988).
    [CrossRef] [PubMed]
  4. E. Tegeler, M. Krumrey, “Stability of Semiconductor Photodiodes as VUV-Detectors,” Nucl. Instrum. Methods, to be published.
  5. R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89–92 (1987).
    [CrossRef]
  6. R. Korde, J. Geist, “Quantum Efficiency Stability of Silicon Photodiodes,” Appl. Opt. 26, 5284–5289 (1987).
    [CrossRef] [PubMed]
  7. National Institute of Standards & Technology (NIST), formerly the National Bureau of Standards (NBS).
  8. L. R. Canfield, N. Swanson, “Far Ultraviolet Detector Standards,” J. Res. Natl. Bur. Stand. (U.S.) 92, 97–112 (1987).
    [CrossRef]
  9. R. Korde, L. R. Canfield, B. Wallis, “Stable, High Quantum Efficiency Silicon Photodiodes for Vacuum-UV Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 932, 153–160 (1988).
  10. R. C. Alig, S. Bloom, C. W. Struck, “Scattering by Ionization and Phonon Emission in Semiconductors,” Phys. Rev. B 22, 5565–5582 (1980).
    [CrossRef]
  11. R. D. Ryan, “Precision Measurements of the Ionization Energy and Its Temperature Variation in High Purity Silicon Radiation Detectors,” IEEE Trans. Nucl. Sci. NS-20, 473–480 (1973).
    [CrossRef]
  12. E. D. Palik, Ed., Handbook of Optical Constants (Academic, New York, 1985).
  13. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Pied Publications, Lincoln, NE, 1967).

1988 (2)

M. Krumrey, E. Tegeler, J. Barth, M. Krisch, F. Schafers, R. Wolf, “Schottky Type Photodiodes as Detectors in the VUV and Soft X-Ray Range,” Appl. Opt. 27, 4336–4341 (1988).
[CrossRef] [PubMed]

R. Korde, L. R. Canfield, B. Wallis, “Stable, High Quantum Efficiency Silicon Photodiodes for Vacuum-UV Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 932, 153–160 (1988).

1987 (5)

J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
[CrossRef]

R. A. Stern et al., “Ultraviolet and Extreme Ultraviolet Response of Charge-Coupled-Device Detectors,” Opt. Eng. 26, 875–883 (1987).
[CrossRef]

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89–92 (1987).
[CrossRef]

R. Korde, J. Geist, “Quantum Efficiency Stability of Silicon Photodiodes,” Appl. Opt. 26, 5284–5289 (1987).
[CrossRef] [PubMed]

L. R. Canfield, N. Swanson, “Far Ultraviolet Detector Standards,” J. Res. Natl. Bur. Stand. (U.S.) 92, 97–112 (1987).
[CrossRef]

1980 (1)

R. C. Alig, S. Bloom, C. W. Struck, “Scattering by Ionization and Phonon Emission in Semiconductors,” Phys. Rev. B 22, 5565–5582 (1980).
[CrossRef]

1973 (1)

R. D. Ryan, “Precision Measurements of the Ionization Energy and Its Temperature Variation in High Purity Silicon Radiation Detectors,” IEEE Trans. Nucl. Sci. NS-20, 473–480 (1973).
[CrossRef]

Alig, R. C.

R. C. Alig, S. Bloom, C. W. Struck, “Scattering by Ionization and Phonon Emission in Semiconductors,” Phys. Rev. B 22, 5565–5582 (1980).
[CrossRef]

Barth, J.

Bloom, S.

R. C. Alig, S. Bloom, C. W. Struck, “Scattering by Ionization and Phonon Emission in Semiconductors,” Phys. Rev. B 22, 5565–5582 (1980).
[CrossRef]

Campbell, D.

J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
[CrossRef]

Canfield, L. R.

R. Korde, L. R. Canfield, B. Wallis, “Stable, High Quantum Efficiency Silicon Photodiodes for Vacuum-UV Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 932, 153–160 (1988).

L. R. Canfield, N. Swanson, “Far Ultraviolet Detector Standards,” J. Res. Natl. Bur. Stand. (U.S.) 92, 97–112 (1987).
[CrossRef]

Daud, T.

J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
[CrossRef]

Elliot, T.

J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
[CrossRef]

Geist, J.

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89–92 (1987).
[CrossRef]

R. Korde, J. Geist, “Quantum Efficiency Stability of Silicon Photodiodes,” Appl. Opt. 26, 5284–5289 (1987).
[CrossRef] [PubMed]

Janesick, J. R.

J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
[CrossRef]

Korde, R.

R. Korde, L. R. Canfield, B. Wallis, “Stable, High Quantum Efficiency Silicon Photodiodes for Vacuum-UV Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 932, 153–160 (1988).

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89–92 (1987).
[CrossRef]

R. Korde, J. Geist, “Quantum Efficiency Stability of Silicon Photodiodes,” Appl. Opt. 26, 5284–5289 (1987).
[CrossRef] [PubMed]

Krisch, M.

Krumrey, M.

Ryan, R. D.

R. D. Ryan, “Precision Measurements of the Ionization Energy and Its Temperature Variation in High Purity Silicon Radiation Detectors,” IEEE Trans. Nucl. Sci. NS-20, 473–480 (1973).
[CrossRef]

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Pied Publications, Lincoln, NE, 1967).

Schafers, F.

Stern, R. A.

R. A. Stern et al., “Ultraviolet and Extreme Ultraviolet Response of Charge-Coupled-Device Detectors,” Opt. Eng. 26, 875–883 (1987).
[CrossRef]

Struck, C. W.

R. C. Alig, S. Bloom, C. W. Struck, “Scattering by Ionization and Phonon Emission in Semiconductors,” Phys. Rev. B 22, 5565–5582 (1980).
[CrossRef]

Swanson, N.

L. R. Canfield, N. Swanson, “Far Ultraviolet Detector Standards,” J. Res. Natl. Bur. Stand. (U.S.) 92, 97–112 (1987).
[CrossRef]

Tegeler, E.

Wallis, B.

R. Korde, L. R. Canfield, B. Wallis, “Stable, High Quantum Efficiency Silicon Photodiodes for Vacuum-UV Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 932, 153–160 (1988).

Wolf, R.

Appl. Opt. (2)

IEEE Trans. Nucl. Sci. (1)

R. D. Ryan, “Precision Measurements of the Ionization Energy and Its Temperature Variation in High Purity Silicon Radiation Detectors,” IEEE Trans. Nucl. Sci. NS-20, 473–480 (1973).
[CrossRef]

J. Res. Natl. Bur. Stand. (U.S.) (1)

L. R. Canfield, N. Swanson, “Far Ultraviolet Detector Standards,” J. Res. Natl. Bur. Stand. (U.S.) 92, 97–112 (1987).
[CrossRef]

Opt. Eng. (2)

J. R. Janesick, D. Campbell, T. Elliot, T. Daud, “Flash Technology for Charge-Coupled-Device Imaging in the Ultraviolet,” Opt. Eng. 26, 852–863 (1987).
[CrossRef]

R. A. Stern et al., “Ultraviolet and Extreme Ultraviolet Response of Charge-Coupled-Device Detectors,” Opt. Eng. 26, 875–883 (1987).
[CrossRef]

Phys. Rev. B (1)

R. C. Alig, S. Bloom, C. W. Struck, “Scattering by Ionization and Phonon Emission in Semiconductors,” Phys. Rev. B 22, 5565–5582 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. Korde, L. R. Canfield, B. Wallis, “Stable, High Quantum Efficiency Silicon Photodiodes for Vacuum-UV Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 932, 153–160 (1988).

Solid State Electron. (1)

R. Korde, J. Geist, “Stable, High Quantum Efficiency Silicon Photodiodes by Arsenic Diffusion,” Solid State Electron. 30, 89–92 (1987).
[CrossRef]

Other (4)

E. D. Palik, Ed., Handbook of Optical Constants (Academic, New York, 1985).

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Pied Publications, Lincoln, NE, 1967).

National Institute of Standards & Technology (NIST), formerly the National Bureau of Standards (NBS).

E. Tegeler, M. Krumrey, “Stability of Semiconductor Photodiodes as VUV-Detectors,” Nucl. Instrum. Methods, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the photodiode type investigated.

Fig. 2
Fig. 2

Quantum efficiency of As- and P-doped photodiodes with oxide thicknesses as indicated. The straight line represents the quantum efficiency of Si based on a value of 3.63 eV per electron–hole pair, not including reflection losses.

Fig. 3
Fig. 3

Quantum efficiency of photodiodes, with different oxide thicknesses, in the region of oxide absorption.

Fig. 4
Fig. 4

Calculated (solid curve) and measured (*) quantum efficiencies of a photodiode with 77 Å of oxide. The calculated curve is based on an efficiency of 3.63 eV per pair for electron–hole production in Si and includes losses due to reflection and oxide absorption. The dashed curve is calculated based on the additional assumption that 20% of the photons absorbed in the oxide contribute carriers to the Si.

Fig. 5
Fig. 5

Measured effect of radiation exposure on a photodiode with 44 Å of oxide at three photon energies.

Fig. 6
Fig. 6

Measured quantum efficiency of photodiodes with 46 and 28 Å of oxide.

Fig. 7
Fig. 7

Measured effect of radiation exposure on a photodiode with insufficient (28-Å) oxide.

Fig. 8
Fig. 8

Measured quantum efficiency of photodiodes with 46 and 28 Å of oxide in the vicinity of 100-eV photon energy, at which energy the 1/e absorption length in Si decreases by more than an order of magnitude.

Metrics