Abstract

We propose a new silicon photodiode model optimized for high-accuracy measurement usage. The new model differs from previous models in that the contribution to the quantum efficiency from the diode front region is described by an integral transform of the equilibrium minority carrier concentration. This description is accurate as long as the recombination of excess minority carriers in the front region occurs only at the front surface and the diode is operating linearly.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral supralinearity prediction of silicon photodiodes in the near-infrared range

Minoru Tanabe, Kuniaki Amemiya, Takayuki Numata, and Daiji Fukuda
Appl. Opt. 54(36) 10705-10710 (2015)

New model for the internal quantum efficiency of photodiodes based on photocurrent analysis

Alejandro Ferrero, Joaquin Campos, Alicia Pons, and Antonio Corrons
Appl. Opt. 44(2) 208-216 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription