Abstract

Optical register transfer microoperations are proposed. Based on an optical holographic associative symbolic substitution, a hybrid optical word-parallel bit-serial register transfer processor architecture is described. Preliminary experimental results are included.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Arrathoon, “Logic Based Spatial Light Modulators,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 230–239 (1988).
  2. P. S. Guilfoyle, W. J. Wiley, “Combinatorial Logic Based Digital Optical Computing Architectures,” Appl. Opt. 27, 1661– 1673 (1988).
    [CrossRef] [PubMed]
  3. Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, “A Compact Folded Path Free-Space Optical Programmable Logic Array,” Opt. Lett. 13, 895–897 (1988).
    [CrossRef] [PubMed]
  4. S. F. Habiby, S. A. Collins, “Implementation of a Fast Digital Optical Matrix-Vector Multiplier Using a Holographic Look-Up Table and Residue Arithmetic,” Appl. Opt. 26, 4639– 4652 (1987).
    [CrossRef] [PubMed]
  5. M. M. Mano, Computer System Architecture (Prentice-Hall, Englewood Cliffs, NJ, 1982), Ch. 4.
  6. K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical Computing with Symbolic Substitution,” Appl. Opt. 25, 3054–3060 (1986).
    [CrossRef] [PubMed]
  7. Y. Li, G. Eichmann, R. Dorsinville, R. R. Alfano, “An and Operation-Based Symbolic Pattern Recognizer,” Opt. Commun. 63, 375–379 (1987).
    [CrossRef]
  8. F. T. S. Yu, S. Jutamulia, “Implementation of Symbolic Substitution Logic Using Optical Associative Memories,” Appl. Opt. 26, 2293–2294 (1987).
    [CrossRef] [PubMed]
  9. F. T. S. Yu, C. Zhang, S. Jutamulia, “Applications of One-Step Holographic Associative Memory to Symbolic Substitution,” Opt. Eng. 27, 399–402 (1988).
    [CrossRef]
  10. L. P. Boivin, “Multiple Imaging Using Various Types of Simple Phase Gratings,” Appl. Opt. 11, 1782–1792 (1972).
    [CrossRef] [PubMed]
  11. P. Matthijsse, “Multiple Imaging with Thin Phase Filters: a Signal Processing Approach,” J. Opt. Soc. Am. 68, 733–739 (1978).
    [CrossRef]
  12. W.-H. Lee, “High Efficiency Multiple Beam Gratings,” Appl. Opt. 18, 2152–2158 (1979).
    [CrossRef] [PubMed]
  13. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison Between Optical and Electronical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]

1988 (5)

1987 (3)

1986 (1)

1979 (1)

1978 (1)

1972 (1)

Alfano, R. R.

Y. Li, G. Eichmann, R. Dorsinville, R. R. Alfano, “An and Operation-Based Symbolic Pattern Recognizer,” Opt. Commun. 63, 375–379 (1987).
[CrossRef]

Arrathoon, R.

R. Arrathoon, “Logic Based Spatial Light Modulators,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 230–239 (1988).

Boivin, L. P.

Brenner, K.-H.

Collins, S. A.

Dorsinville, R.

Y. Li, G. Eichmann, R. Dorsinville, R. R. Alfano, “An and Operation-Based Symbolic Pattern Recognizer,” Opt. Commun. 63, 375–379 (1987).
[CrossRef]

Eichmann, G.

Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, “A Compact Folded Path Free-Space Optical Programmable Logic Array,” Opt. Lett. 13, 895–897 (1988).
[CrossRef] [PubMed]

Y. Li, G. Eichmann, R. Dorsinville, R. R. Alfano, “An and Operation-Based Symbolic Pattern Recognizer,” Opt. Commun. 63, 375–379 (1987).
[CrossRef]

Esener, S. C.

Feldman, M. R.

Guest, C. C.

Guilfoyle, P. S.

Habiby, S. F.

Huang, A.

Jutamulia, S.

F. T. S. Yu, C. Zhang, S. Jutamulia, “Applications of One-Step Holographic Associative Memory to Symbolic Substitution,” Opt. Eng. 27, 399–402 (1988).
[CrossRef]

F. T. S. Yu, S. Jutamulia, “Implementation of Symbolic Substitution Logic Using Optical Associative Memories,” Appl. Opt. 26, 2293–2294 (1987).
[CrossRef] [PubMed]

Kim, D. H.

Kostrzewski, A.

Lee, S. H.

Lee, W.-H.

Li, Y.

Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, “A Compact Folded Path Free-Space Optical Programmable Logic Array,” Opt. Lett. 13, 895–897 (1988).
[CrossRef] [PubMed]

Y. Li, G. Eichmann, R. Dorsinville, R. R. Alfano, “An and Operation-Based Symbolic Pattern Recognizer,” Opt. Commun. 63, 375–379 (1987).
[CrossRef]

Mano, M. M.

M. M. Mano, Computer System Architecture (Prentice-Hall, Englewood Cliffs, NJ, 1982), Ch. 4.

Matthijsse, P.

Streibl, N.

Wiley, W. J.

Yu, F. T. S.

F. T. S. Yu, C. Zhang, S. Jutamulia, “Applications of One-Step Holographic Associative Memory to Symbolic Substitution,” Opt. Eng. 27, 399–402 (1988).
[CrossRef]

F. T. S. Yu, S. Jutamulia, “Implementation of Symbolic Substitution Logic Using Optical Associative Memories,” Appl. Opt. 26, 2293–2294 (1987).
[CrossRef] [PubMed]

Zhang, C.

F. T. S. Yu, C. Zhang, S. Jutamulia, “Applications of One-Step Holographic Associative Memory to Symbolic Substitution,” Opt. Eng. 27, 399–402 (1988).
[CrossRef]

Appl. Opt. (7)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

Y. Li, G. Eichmann, R. Dorsinville, R. R. Alfano, “An and Operation-Based Symbolic Pattern Recognizer,” Opt. Commun. 63, 375–379 (1987).
[CrossRef]

Opt. Eng. (1)

F. T. S. Yu, C. Zhang, S. Jutamulia, “Applications of One-Step Holographic Associative Memory to Symbolic Substitution,” Opt. Eng. 27, 399–402 (1988).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. Arrathoon, “Logic Based Spatial Light Modulators,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 230–239 (1988).

Other (1)

M. M. Mano, Computer System Architecture (Prentice-Hall, Englewood Cliffs, NJ, 1982), Ch. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a 1-bit OHASS processor. Input binary symbols are encoded into orthogonal patterns. L1, L2 and H, are two identical Fourier lenses and a hologram. The two logic and reference symbols are inserted at the input plane. For the recording of the four associative subholograms, the Fourier spectrum is divided into four quadrants. For logic processing, depending on the inputs, at the system's output plane an associated output will be detected.

Fig. 2
Fig. 2

Schematic of a N-bit OHASS iterative processor. A, B and C*, are three N-bit input registers driving channelized laser diodes; C, an N-bit output register storing the result of optical threshold detector array. In addition to the lenses, holograms, and an input duplication grating, a Fourier plane 2-D SLM and a parallel electronic feedback are used.

Fig. 3
Fig. 3

Results of a 1-bit OHASS interregister transfer microoperation. (a) and (b), an associative transfer of a symbolic 1 and 0, respectively. The top and bottom patterns are the input and output symbols.

Fig. 4
Fig. 4

Results of a 1-bit OHASS logic complement microoperation. (a) and (b), the associative complement of a symbolic logic 0 and 1, respectively.

Fig. 5
Fig. 5

Results of a 1-bit OHASS logic and microoperation. (a)–(d), the associative and operation results of the four input binary symbol pairs.

Tables (2)

Tables Icon

Table I List of Inter-Register Transfer Microoperations

Tables Icon

Table II List of Register Logic Microoperations

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

c ( x , y ) = i = 0 N 1 [ a ( x i x 0 , y y 0 ) + b ( x i x 0 , y 2 y 0 ) + c * ( x i x 0 , y + y 0 ) ] ,
O ( x , η ) = C ( x , η ) G ( x , η ) = k = 0 M 1 C ( x , η k η 1 ) = i = 0 N 1 k = 0 M 1 { A ( x i x 0 , η k η 1 ) exp [ j y 0 ( η k η 1 ) ] + B ( x i x 0 , η k η 1 ) exp [ j 2 y 0 ( η k η 1 ) ] + C * ( x i x 0 , η k η 1 ) exp [ + j y 0 ( η k η 1 ) ] } ,
O 5 = B ¯
C B ¯
O 7 = A B ¯
C A B ¯
O 10 = A + B ¯
C A + B ¯
O 13 = A B ¯
C A B ¯
O 14 = A B ¯
C A B ¯
O 15 = A + B ¯
C A + B ¯

Metrics