Abstract

This paper presents a new concept for recognizing target shapes. The method depends upon establishing a uniform current density in a mesh of interconnected photosensitive pixels and characterizing the target image by potential changes at the mesh boundary. The concept proposes a way to reduce potentially hundreds of thousands of pixel values to a small set of signature values. The concept also removes the traditional time bottleneck of having to read the image off the focal plane before commencing analysis. The method is capable of easily handling target rotation and linear scaling.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Blackburn, H. A. Schafft, L. J. Swartzendruber, “Nondestructive Photovoltaic Technique for the Measurement of Resistivity Gradients in Circular Semiconductor Wafers,” J. Electrochem. Soc. 119, 1773–1778 (1972).
    [Crossref]
  2. D. L. Blackburn, “Photovoltaic Technique for Measuring Resistivity Variations of High Resistivity Silicon Slices,” J. Res. of the Nat. Bur. of Stand. 83, 265–271 (1978).
    [Crossref]
  3. R. D. Larrabee, D. L. Blackburn, “Theory and Application of a Nondestructive Photovoltaic Technique for the Measurement of Resistivity Variations in Circular Semiconductor Slices,” Solid-State Electron. 23, 1059–1068 (1980).
    [Crossref]
  4. J. Millman, A. Grabel, Microelectronics, 2nd Edition, (McGraw-Hill, New York, 1987).
  5. H. A. Haus, J. P. Penhune, Case Studies in Electromagnetism (Wiley, New York, 1960).
  6. W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968).
  7. H. T. Kung, “Why Systolic Architectures,” Comput.37–46 (Jan.1982).
    [Crossref]
  8. R. J. Lytle, K. A. Dines, “Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,” IEEE Trans, on Geosc. Remote Sens. GE-18, 234–240 (1980).
    [Crossref]
  9. R. J. Lytle, J. T. Okada, C. Concepcion, “The Potential Field Around Subsurface Electrically Excited Conductors,” IEEE Trans. Geosc. Remote Sens. GE-18, 240–243 (1980).
    [Crossref]
  10. R. J. Lytle, “Resistivity and Induced-Polarization Probing in the Vicinity of a Spherical Anomaly,” IEEE Trans. Geosc. Remote Sens. GE-20, 493–499 (1982).
    [Crossref]
  11. A. L. Ramirez, R. J. Lytle, “Alterant Geophysical Tomography,” International Geoscience and Remote Sensing Symposium (IGARSS) 2, 9.1–9.3 (1983).
  12. J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
    [Crossref]

1988 (1)

J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
[Crossref]

1983 (1)

A. L. Ramirez, R. J. Lytle, “Alterant Geophysical Tomography,” International Geoscience and Remote Sensing Symposium (IGARSS) 2, 9.1–9.3 (1983).

1982 (2)

R. J. Lytle, “Resistivity and Induced-Polarization Probing in the Vicinity of a Spherical Anomaly,” IEEE Trans. Geosc. Remote Sens. GE-20, 493–499 (1982).
[Crossref]

H. T. Kung, “Why Systolic Architectures,” Comput.37–46 (Jan.1982).
[Crossref]

1980 (3)

R. J. Lytle, K. A. Dines, “Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,” IEEE Trans, on Geosc. Remote Sens. GE-18, 234–240 (1980).
[Crossref]

R. J. Lytle, J. T. Okada, C. Concepcion, “The Potential Field Around Subsurface Electrically Excited Conductors,” IEEE Trans. Geosc. Remote Sens. GE-18, 240–243 (1980).
[Crossref]

R. D. Larrabee, D. L. Blackburn, “Theory and Application of a Nondestructive Photovoltaic Technique for the Measurement of Resistivity Variations in Circular Semiconductor Slices,” Solid-State Electron. 23, 1059–1068 (1980).
[Crossref]

1978 (1)

D. L. Blackburn, “Photovoltaic Technique for Measuring Resistivity Variations of High Resistivity Silicon Slices,” J. Res. of the Nat. Bur. of Stand. 83, 265–271 (1978).
[Crossref]

1972 (1)

D. L. Blackburn, H. A. Schafft, L. J. Swartzendruber, “Nondestructive Photovoltaic Technique for the Measurement of Resistivity Gradients in Circular Semiconductor Wafers,” J. Electrochem. Soc. 119, 1773–1778 (1972).
[Crossref]

Blackburn, D. L.

R. D. Larrabee, D. L. Blackburn, “Theory and Application of a Nondestructive Photovoltaic Technique for the Measurement of Resistivity Variations in Circular Semiconductor Slices,” Solid-State Electron. 23, 1059–1068 (1980).
[Crossref]

D. L. Blackburn, “Photovoltaic Technique for Measuring Resistivity Variations of High Resistivity Silicon Slices,” J. Res. of the Nat. Bur. of Stand. 83, 265–271 (1978).
[Crossref]

D. L. Blackburn, H. A. Schafft, L. J. Swartzendruber, “Nondestructive Photovoltaic Technique for the Measurement of Resistivity Gradients in Circular Semiconductor Wafers,” J. Electrochem. Soc. 119, 1773–1778 (1972).
[Crossref]

Concepcion, C.

R. J. Lytle, J. T. Okada, C. Concepcion, “The Potential Field Around Subsurface Electrically Excited Conductors,” IEEE Trans. Geosc. Remote Sens. GE-18, 240–243 (1980).
[Crossref]

Dines, K. A.

R. J. Lytle, K. A. Dines, “Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,” IEEE Trans, on Geosc. Remote Sens. GE-18, 234–240 (1980).
[Crossref]

Grabel, A.

J. Millman, A. Grabel, Microelectronics, 2nd Edition, (McGraw-Hill, New York, 1987).

Haus, H. A.

H. A. Haus, J. P. Penhune, Case Studies in Electromagnetism (Wiley, New York, 1960).

Hutchinson, J.

J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
[Crossref]

Koch, C.

J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
[Crossref]

Kung, H. T.

H. T. Kung, “Why Systolic Architectures,” Comput.37–46 (Jan.1982).
[Crossref]

Larrabee, R. D.

R. D. Larrabee, D. L. Blackburn, “Theory and Application of a Nondestructive Photovoltaic Technique for the Measurement of Resistivity Variations in Circular Semiconductor Slices,” Solid-State Electron. 23, 1059–1068 (1980).
[Crossref]

Luo, J.

J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
[Crossref]

Lytle, R. J.

A. L. Ramirez, R. J. Lytle, “Alterant Geophysical Tomography,” International Geoscience and Remote Sensing Symposium (IGARSS) 2, 9.1–9.3 (1983).

R. J. Lytle, “Resistivity and Induced-Polarization Probing in the Vicinity of a Spherical Anomaly,” IEEE Trans. Geosc. Remote Sens. GE-20, 493–499 (1982).
[Crossref]

R. J. Lytle, J. T. Okada, C. Concepcion, “The Potential Field Around Subsurface Electrically Excited Conductors,” IEEE Trans. Geosc. Remote Sens. GE-18, 240–243 (1980).
[Crossref]

R. J. Lytle, K. A. Dines, “Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,” IEEE Trans, on Geosc. Remote Sens. GE-18, 234–240 (1980).
[Crossref]

Mead, C.

J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
[Crossref]

Millman, J.

J. Millman, A. Grabel, Microelectronics, 2nd Edition, (McGraw-Hill, New York, 1987).

Okada, J. T.

R. J. Lytle, J. T. Okada, C. Concepcion, “The Potential Field Around Subsurface Electrically Excited Conductors,” IEEE Trans. Geosc. Remote Sens. GE-18, 240–243 (1980).
[Crossref]

Penhune, J. P.

H. A. Haus, J. P. Penhune, Case Studies in Electromagnetism (Wiley, New York, 1960).

Ramirez, A. L.

A. L. Ramirez, R. J. Lytle, “Alterant Geophysical Tomography,” International Geoscience and Remote Sensing Symposium (IGARSS) 2, 9.1–9.3 (1983).

Schafft, H. A.

D. L. Blackburn, H. A. Schafft, L. J. Swartzendruber, “Nondestructive Photovoltaic Technique for the Measurement of Resistivity Gradients in Circular Semiconductor Wafers,” J. Electrochem. Soc. 119, 1773–1778 (1972).
[Crossref]

Smythe, W. R.

W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968).

Swartzendruber, L. J.

D. L. Blackburn, H. A. Schafft, L. J. Swartzendruber, “Nondestructive Photovoltaic Technique for the Measurement of Resistivity Gradients in Circular Semiconductor Wafers,” J. Electrochem. Soc. 119, 1773–1778 (1972).
[Crossref]

Comput. (2)

H. T. Kung, “Why Systolic Architectures,” Comput.37–46 (Jan.1982).
[Crossref]

J. Hutchinson, C. Koch, J. Luo, C. Mead, “Computing Motion Using Analog and Binary Resistive Networks,” Comput. 21, 52–63 (Mar.1988).
[Crossref]

IEEE Trans, on Geosc. Remote Sens. (1)

R. J. Lytle, K. A. Dines, “Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,” IEEE Trans, on Geosc. Remote Sens. GE-18, 234–240 (1980).
[Crossref]

IEEE Trans. Geosc. Remote Sens. (2)

R. J. Lytle, J. T. Okada, C. Concepcion, “The Potential Field Around Subsurface Electrically Excited Conductors,” IEEE Trans. Geosc. Remote Sens. GE-18, 240–243 (1980).
[Crossref]

R. J. Lytle, “Resistivity and Induced-Polarization Probing in the Vicinity of a Spherical Anomaly,” IEEE Trans. Geosc. Remote Sens. GE-20, 493–499 (1982).
[Crossref]

International Geoscience and Remote Sensing Symposium (IGARSS) (1)

A. L. Ramirez, R. J. Lytle, “Alterant Geophysical Tomography,” International Geoscience and Remote Sensing Symposium (IGARSS) 2, 9.1–9.3 (1983).

J. Electrochem. Soc. (1)

D. L. Blackburn, H. A. Schafft, L. J. Swartzendruber, “Nondestructive Photovoltaic Technique for the Measurement of Resistivity Gradients in Circular Semiconductor Wafers,” J. Electrochem. Soc. 119, 1773–1778 (1972).
[Crossref]

J. Res. of the Nat. Bur. of Stand. (1)

D. L. Blackburn, “Photovoltaic Technique for Measuring Resistivity Variations of High Resistivity Silicon Slices,” J. Res. of the Nat. Bur. of Stand. 83, 265–271 (1978).
[Crossref]

Solid-State Electron. (1)

R. D. Larrabee, D. L. Blackburn, “Theory and Application of a Nondestructive Photovoltaic Technique for the Measurement of Resistivity Variations in Circular Semiconductor Slices,” Solid-State Electron. 23, 1059–1068 (1980).
[Crossref]

Other (3)

J. Millman, A. Grabel, Microelectronics, 2nd Edition, (McGraw-Hill, New York, 1987).

H. A. Haus, J. P. Penhune, Case Studies in Electromagnetism (Wiley, New York, 1960).

W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Laplacian architecture.

Fig. 2
Fig. 2

Geometry for the Laplacian architecture.

Fig. 3
Fig. 3

General target shape.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

j ¯ = j 0 ( ī r cos θ ī θ sin θ )
Φ ( r , θ ) = j 0 σ 0 r cos θ
Φ ( R , θ ) = j 0 σ 0 R cos θ
δ Φ ( R , θ ) = Φ ( R , θ ) j 0 σ 0 R cos θ
Φ ( o ) ( r , θ ) = Φ ( i ) ( r , θ ) , r = r 0
n ¯ ( σ Φ ( i ) ( r , θ ) σ 0 Φ ( o ) ) = 0 , r = r 0 ,
Φ ( r , θ ) = a 0 lnr + b 0 + n = 1 r n ( a n cos n θ + b n sin n θ ) + n = 1 r n ( c n cos n θ + d n sin n θ )
j 0 σ 0 + c 1 r 0 2 = a 1 .
j 0 σ 0 c 1 r 0 2 = σ σ 0 a 1 .
Φ ( o ) ( r , θ ) = j 0 σ 0 r cos θ + j 0 σ 0 r 0 2 ( σ 0 σ σ 0 + σ ) cos θ r
δ Φ ( R , θ ) = j 0 σ 0 r 0 2 ( σ 0 σ σ 0 + σ ) cos θ r
c 1 = j 0 σ 0 r 0 2 ( σ 0 σ σ 0 + σ ) .
Φ ( ρ , θ ) = n = 1 ( c n ρ n cos n θ + d n ρ n sin n θ ) .
Φ ( R , θ ) = n = 1 ( C n cos n θ + D n sin n θ ) ,
{ C n , D n } = { C n , D n } cos α + { C n , D n } sin α .
C i + 1 C i = D i + 1 D i = k R

Metrics