Abstract

A Transmittance band model for IR water vapor in the atmosphere is determined using line by line generated spectra. The absorber parameters of the model are tabulated.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Pierluissi, C.-M. Tsai, “New lowtran Models for the Uniformly Mixed Gases,” Appl. Opt. 26, 616–618 (1987).
    [CrossRef] [PubMed]
  2. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, 1983), ADA-137786.
  3. J. M. Jarem, J. H. Pierluissi, M. E. Maragoudakis, “Numerical Methods of Band Modeling and Their Application to Atmospheric Nitrous Oxide,” Appl. Opt. 23, 406–410 (1984).
    [CrossRef] [PubMed]
  4. S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).
  5. J. H. Pierluissi, K. Tomiyama, “Numerical Methods for the Generation of Empirical and Analytical Transmittance Functions with Applications to Atmospheric Trace Gases,” Appl. Opt. 19, 2298–2309 (1980).
    [CrossRef] [PubMed]

1987 (1)

1984 (1)

1981 (1)

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).

1980 (1)

Clough, S. A.

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).

Gallery, W. O.

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).

Jarem, J. M.

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, 1983), ADA-137786.

Maragoudakis, M. E.

Pierluissi, J. H.

Rothman, L. S.

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).

Tomiyama, K.

Tsai, C.-M.

Appl. Opt. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: FASCOD1B,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–000 (1981).

Other (1)

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, 1983), ADA-137786.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scaling parameter C (continuous trace) for the calculation of 20-cm−1 average transmittance at 5-cm −1 intervals with the proposed water vapor model together with samples of the scaling parameter CL (×) from lowtran.

Fig. 2
Fig. 2

Transmittance difference between fascod and lowtran water vapor model along a 90° zenith angle path from the earth's surface to a 100-km altitude in the U.S. standard atmosphere.

Fig. 3
Fig. 3

Transmittance difference between fascod and proposed water vapor model along a 90° zenith angle path from the earth's surface to a 100-km altitude in the U.S. standard atmosphere.

Tables (1)

Tables Icon

Table I Band Model Parameters for the Calculation of 20-cm−1 Average Transmittance at 5-cm−1 Intervals Through Water Vapor Using Eq. (1)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ = exp [ ( C W ) a ] ,
W = ( P / P 0 ) n ( T 0 / T ) m U ,
U = 0.1 ρ Z ,
τ = g [ log 10 ( C L W ) ] ,
a = 0.5483 4.8047 ν + 6.6661 e 10 ν 2 ,
n = 1.0653 1.9192 e 5 ν + 2.1947 e 10 ν 2 ,
m = 1.8383 + 5.4271 e 5 ν 6.9546 e 9 ν 2 ,
τ = A exp [ ( C L W ) 0.5628 ] ,

Metrics