Abstract

A laser scanner and a stepping xy stage have been developed for direct writing lithography in the micron and the submicron range. System design is described and examples of exposed photoresist with a structure size of 1 μm are presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Brodie, J. J. Muray, The Physics of Microfabricaiion (Plenum Press, New York, 1982).
  2. “Laser Beams Speed Up Reticle Writing,” Electronics 10, 40–00 (1985).
  3. H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
    [CrossRef]
  4. F. F. Y. Wang, R. Newmann, “Materials Processing Theory and Practices,” in Fine Line Lithography, Vol. 1 (North-Holland, Amsterdam1980).
  5. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1980).
  6. L. Beiser, “Generalized Gradient Deflector and Consequences of Scan of Convergent Light,” J. Opt. Soc. Am. 57, 923–931 (1967).
    [CrossRef]
  7. K. H. Muller, Verfahren zur Festlegung einer Koordinate auf einer Oberflache eines Festkorpers und Vorrichtung zur Durch-fuhrung eines solchen Verfahrens, Patent application VPA 83P 1457 DE, Siemens AG (1983).
  8. AZ Photoresist Products.
  9. H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

1987 (2)

H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
[CrossRef]

H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

1985 (1)

“Laser Beams Speed Up Reticle Writing,” Electronics 10, 40–00 (1985).

1967 (1)

Baumann, F.

H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
[CrossRef]

Beiser, L.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1980).

Brodie, I.

I. Brodie, J. J. Muray, The Physics of Microfabricaiion (Plenum Press, New York, 1982).

Ehrensperger, W.

H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

Hardie, H.

H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
[CrossRef]

Hunklinger, S.

H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
[CrossRef]

Muller, K. H.

K. H. Muller, Verfahren zur Festlegung einer Koordinate auf einer Oberflache eines Festkorpers und Vorrichtung zur Durch-fuhrung eines solchen Verfahrens, Patent application VPA 83P 1457 DE, Siemens AG (1983).

Muray, J. J.

I. Brodie, J. J. Muray, The Physics of Microfabricaiion (Plenum Press, New York, 1982).

Newmann, R.

F. F. Y. Wang, R. Newmann, “Materials Processing Theory and Practices,” in Fine Line Lithography, Vol. 1 (North-Holland, Amsterdam1980).

Rensch, C.

H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

Ulrich, H.

H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

Wang, F. F. Y.

F. F. Y. Wang, R. Newmann, “Materials Processing Theory and Practices,” in Fine Line Lithography, Vol. 1 (North-Holland, Amsterdam1980).

Weiss, G.

H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
[CrossRef]

Wijnaendts-van-Resandt, R. W.

H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1980).

Electronics (1)

“Laser Beams Speed Up Reticle Writing,” Electronics 10, 40–00 (1985).

J. Opt. Soc. Am. (1)

Microcircuit Eng. (1)

H. Ulrich, R. W. Wijnaendts-van-Resandt, C. Rensch, W. Ehrensperger, “Direct Writing Laser Lithography for Production of Microstructures,” Microcircuit Eng. 87, 89 (1987).

Z. Phys. B (1)

H. Hardie, G. Weiss, S. Hunklinger, F. Baumann, “Elastic Properties of Amorphous Water at Low Temperature,” Z. Phys. B 65, 291–000 (1987).
[CrossRef]

Other (5)

F. F. Y. Wang, R. Newmann, “Materials Processing Theory and Practices,” in Fine Line Lithography, Vol. 1 (North-Holland, Amsterdam1980).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1980).

I. Brodie, J. J. Muray, The Physics of Microfabricaiion (Plenum Press, New York, 1982).

K. H. Muller, Verfahren zur Festlegung einer Koordinate auf einer Oberflache eines Festkorpers und Vorrichtung zur Durch-fuhrung eines solchen Verfahrens, Patent application VPA 83P 1457 DE, Siemens AG (1983).

AZ Photoresist Products.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optomechanical concept of the laser-scanning system: (M) microscope objective; (AOM) acoustooptic modulator; (Ph) pinhole; (BS) beam splitter; (PD) photodetector; (PM) photomultiplier; (SOS) start-of-scan signal; ( L 1 , L 1 , L 2 , L 2 )scanning optic.

Fig. 2
Fig. 2

Function of the scanning optic; L1 = 1:1.4/50mm, L2 = 1:2/90mm.

Fig. 3
Fig. 3

Schematic of the electronic components for pattern generation and synchronization: (SOS) start-of-scan; (PD) photodiode; (PM) photomultiplier; (PCLK) pixel clock; (VCO) voltage controlled oscillator; (PLL) phase locked loop; (VSYNC) vertical synchronization; (HSYNC) horizontal synchronization.

Fig. 4
Fig. 4

Precise microscale for xy-position control.

Fig. 5
Fig. 5

Optical imaging of the scale on two CCD lines: (B) micro-scale; (M) microscope objective; (BS) beam splitter; (Zx,y) cylinder lens; (CCDx,y) charge coupled device.

Fig. 6
Fig. 6

Test pattern for SAW device; 2-μm resist thickness.

Fig. 7
Fig. 7

Steep edges in 2-μm resist; detail of Fig. 6.

Fig. 8
Fig. 8

High edge roughness at a ratio d/L = 1; 2 μm resist.

Fig. 9
Fig. 9

Edge roughness of ~0.1 μm at a ratio d/L = 2; 2 μm resist.

Fig. 10
Fig. 10

Curvature of the focal plane, made visible through interference effect.

Fig. 11
Fig. 11

Position error of the xy-stage parallel to scanning direction.

Metrics