Abstract

Real time holographic recording has been performed in glycerol using CO2 laser beams for the writing. The dynamics of the grating formation was monitored with a reading beam at 632.8 nm. Particular attention has been paid on temporal behavior.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, “Pulsed Ir Holography on Tackiwax Films,” Appl. Opt. 17, 3619–3621 (1978).
    [CrossRef] [PubMed]
  2. P. E. Dyer, J. S. Leggatt, “Phase Conjugation in Liquid CS2 by Using a Pulsed CO2 Laser,” Opt. Lett. 13, 583–585 (1988).
    [CrossRef] [PubMed]
  3. J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
    [CrossRef]
  4. V. M. Durasov, E. V. Ivakin, A. S. Rubanov, “Self Diffraction and Reflection of Radiation in Degenerate Four-Wave Interaction in Organic Liquids at the 10.6 μ Wavelength,” Sov. J. Quantum Electron. QE-16, 846–000 (1986).
    [CrossRef]
  5. H. J. Eichler in Laser Induced Dynamics Gratings (Springer-Verlag, Berlin, 1986), p. 98.
  6. H. J. Hoffman, “Thermally Induced Degenerate Four-Wave Mixing,” IEEE J. Quantum Electron. QE-22, 552–000 (1986).
    [CrossRef]

1988 (2)

P. E. Dyer, J. S. Leggatt, “Phase Conjugation in Liquid CS2 by Using a Pulsed CO2 Laser,” Opt. Lett. 13, 583–585 (1988).
[CrossRef] [PubMed]

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

1986 (2)

V. M. Durasov, E. V. Ivakin, A. S. Rubanov, “Self Diffraction and Reflection of Radiation in Degenerate Four-Wave Interaction in Organic Liquids at the 10.6 μ Wavelength,” Sov. J. Quantum Electron. QE-16, 846–000 (1986).
[CrossRef]

H. J. Hoffman, “Thermally Induced Degenerate Four-Wave Mixing,” IEEE J. Quantum Electron. QE-22, 552–000 (1986).
[CrossRef]

1978 (1)

Beaulieu, R.

Blanchard, M.

Cormier, M.

Durasov, V. M.

V. M. Durasov, E. V. Ivakin, A. S. Rubanov, “Self Diffraction and Reflection of Radiation in Degenerate Four-Wave Interaction in Organic Liquids at the 10.6 μ Wavelength,” Sov. J. Quantum Electron. QE-16, 846–000 (1986).
[CrossRef]

Dyer, P. E.

Eichler, H. J.

H. J. Eichler in Laser Induced Dynamics Gratings (Springer-Verlag, Berlin, 1986), p. 98.

Finn, G. M.

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

Hoffman, H. J.

H. J. Hoffman, “Thermally Induced Degenerate Four-Wave Mixing,” IEEE J. Quantum Electron. QE-22, 552–000 (1986).
[CrossRef]

Ivakin, E. V.

V. M. Durasov, E. V. Ivakin, A. S. Rubanov, “Self Diffraction and Reflection of Radiation in Degenerate Four-Wave Interaction in Organic Liquids at the 10.6 μ Wavelength,” Sov. J. Quantum Electron. QE-16, 846–000 (1986).
[CrossRef]

Khoo, J. C.

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

Leggatt, J. S.

Lessard, R. A.

Liu, T. H.

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

Michael, R. R.

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

Rioux, M.

Rubanov, A. S.

V. M. Durasov, E. V. Ivakin, A. S. Rubanov, “Self Diffraction and Reflection of Radiation in Degenerate Four-Wave Interaction in Organic Liquids at the 10.6 μ Wavelength,” Sov. J. Quantum Electron. QE-16, 846–000 (1986).
[CrossRef]

Yan, P. Y.

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

H. J. Hoffman, “Thermally Induced Degenerate Four-Wave Mixing,” IEEE J. Quantum Electron. QE-22, 552–000 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. C. Khoo, P. Y. Yan, G. M. Finn, T. H. Liu, R. R. Michael, “Low-power (10.6 μm) Laser-Beam Amplification by Thermal-Grating-Mediated Degenerate Four-Wave Mixing in a Nematic Liquid-Crystal Film,” J. Opt. Soc. Am. B5, 202–206 (1988); see also L. Richard, J. Mavrin, J. P. Huignard, “Phase Conjugation with Gain at CO2 Laser Line at λ = 10.6 μ from Thermally Induced Gratings in Nematic Liquid Crystals,” Opt. Commun. 57, 365–000 (1986).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

V. M. Durasov, E. V. Ivakin, A. S. Rubanov, “Self Diffraction and Reflection of Radiation in Degenerate Four-Wave Interaction in Organic Liquids at the 10.6 μ Wavelength,” Sov. J. Quantum Electron. QE-16, 846–000 (1986).
[CrossRef]

Other (1)

H. J. Eichler in Laser Induced Dynamics Gratings (Springer-Verlag, Berlin, 1986), p. 98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Typical oscilloscope traces for signal induced in the first order of diffraction. Grating spacing: 16 μm.

Fig. 3
Fig. 3

Semi-logarithmic plot of the signal (arbitrary units) disappearance with time in the first order of diffraction. Grating spacing: 11.5 μm.

Fig. 4
Fig. 4

Logarithmic plot of the variation of signal (arbitrary units) with writing intensity in the first diffraction order for various angles of the writing beams.

Tables (1)

Tables Icon

Table I Measured Diffraction Efficiencies, Risetlmes, Decay Times, Theoretical tp and td for Various Grating Spacings

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t d = 2 ρ C p 4 π 2 k ,
η = [ J 1 ( 2 π Δ nd λ ) ] 2 ,

Metrics