Abstract

A technique for obtaining spatially and polarization resolved maps of the electroluminescence along the length of 1.3-μm InGaAsP semiconductor diode lasers is described. The technique yields valuable information on the mechanical strain and uniformity of material in the active region. Measurements on thirty lasers of two different types—planar buried heterostructure (PBH) and gain guided—are summarized. This technique provides a means of correlating operating characteristics of the lasers with the physical properties of the laser material. Large differences between PBH and gain guided lasers are found. PBH exhibit typically a larger average value of strain and more scattering centers than gain guided lasers. A laser with a bent active region exhibited spectral bistability with respect to temperature. The strain distribution in the active region was observed to change during the first few hours of high temperature aging.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fukuda, “Laser and LED Reliability Update,” J. Light. Tech. 6, pp. 1488–1495 (1988).
    [CrossRef]
  2. M. Fukuda, G. Iwane, “Degradation of Active Region in InGaAsP/InP Buried Heterostructure Lasers,” J. Appl. Phys. 58, pp. 2932–2936 (1985).
    [CrossRef]
  3. S. N. G. Chu et al., “Defect Mechanisms in Degradation of 1.3-μm Wavelength Channelled-Substrate Buried Heterostructure Lasers,” J. Appl. Phys. 63, 611–623 (1988).
    [CrossRef]
  4. A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).
  5. E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).
  6. R. Rimpler, W. Both, “Thermally Induced Stress in GaAs/GaAlAs Stripe Laser Diodes,” IEE Proc. 134Pt. J, 323–325 (1987).
  7. S. D. Hersee, “Long Lived High Radiance LED’s for Fibre Optic Communication Systems,” IEDMWashington, DC, (1977).
  8. M. Fukuda, K. Wakita, G. Iwane, “Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation,” Jpn. J. Appl. Phys. 20, pp. L87–L90 (1981).
    [CrossRef]
  9. K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.
  10. B. Wakefield, “Strain-Enhanced Luminescence Degradation in GaAs/GaAlAs Double-Heterostructure Lasers Revealed by Photoluminescence,” J. Appl. Phys. 50, 7914–7916 (1979).
    [CrossRef]
  11. P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
    [CrossRef]
  12. C. S. Adams, D. T. Cassidy, “Effects of Stress on Threshold, Wavelength and Polarization of the Output of InGaAsP Semiconductor Diode lasers,” J. Appl. Phys. 64, 6631–6638Dec.1 (1988).
    [CrossRef]
  13. D. T. Cassidy, C. S. Adams, “Polarization of the Output of InGaAsP Semiconductor Diode lasers,” IEEE J. Quantum Electron.25, June (1989), in press.
    [CrossRef]

1988

M. Fukuda, “Laser and LED Reliability Update,” J. Light. Tech. 6, pp. 1488–1495 (1988).
[CrossRef]

S. N. G. Chu et al., “Defect Mechanisms in Degradation of 1.3-μm Wavelength Channelled-Substrate Buried Heterostructure Lasers,” J. Appl. Phys. 63, 611–623 (1988).
[CrossRef]

C. S. Adams, D. T. Cassidy, “Effects of Stress on Threshold, Wavelength and Polarization of the Output of InGaAsP Semiconductor Diode lasers,” J. Appl. Phys. 64, 6631–6638Dec.1 (1988).
[CrossRef]

1987

P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
[CrossRef]

R. Rimpler, W. Both, “Thermally Induced Stress in GaAs/GaAlAs Stripe Laser Diodes,” IEE Proc. 134Pt. J, 323–325 (1987).

1985

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

M. Fukuda, G. Iwane, “Degradation of Active Region in InGaAsP/InP Buried Heterostructure Lasers,” J. Appl. Phys. 58, pp. 2932–2936 (1985).
[CrossRef]

1981

M. Fukuda, K. Wakita, G. Iwane, “Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation,” Jpn. J. Appl. Phys. 20, pp. L87–L90 (1981).
[CrossRef]

1979

B. Wakefield, “Strain-Enhanced Luminescence Degradation in GaAs/GaAlAs Double-Heterostructure Lasers Revealed by Photoluminescence,” J. Appl. Phys. 50, 7914–7916 (1979).
[CrossRef]

Adams, C. S.

C. S. Adams, D. T. Cassidy, “Effects of Stress on Threshold, Wavelength and Polarization of the Output of InGaAsP Semiconductor Diode lasers,” J. Appl. Phys. 64, 6631–6638Dec.1 (1988).
[CrossRef]

D. T. Cassidy, C. S. Adams, “Polarization of the Output of InGaAsP Semiconductor Diode lasers,” IEEE J. Quantum Electron.25, June (1989), in press.
[CrossRef]

Both, W.

R. Rimpler, W. Both, “Thermally Induced Stress in GaAs/GaAlAs Stripe Laser Diodes,” IEE Proc. 134Pt. J, 323–325 (1987).

Butler, B. R.

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

Cassidy, D. T.

C. S. Adams, D. T. Cassidy, “Effects of Stress on Threshold, Wavelength and Polarization of the Output of InGaAsP Semiconductor Diode lasers,” J. Appl. Phys. 64, 6631–6638Dec.1 (1988).
[CrossRef]

D. T. Cassidy, C. S. Adams, “Polarization of the Output of InGaAsP Semiconductor Diode lasers,” IEEE J. Quantum Electron.25, June (1989), in press.
[CrossRef]

Chu, S. N. G.

S. N. G. Chu et al., “Defect Mechanisms in Degradation of 1.3-μm Wavelength Channelled-Substrate Buried Heterostructure Lasers,” J. Appl. Phys. 63, 611–623 (1988).
[CrossRef]

De Cremoux, B.

K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.

Fukuda, M.

M. Fukuda, “Laser and LED Reliability Update,” J. Light. Tech. 6, pp. 1488–1495 (1988).
[CrossRef]

M. Fukuda, G. Iwane, “Degradation of Active Region in InGaAsP/InP Buried Heterostructure Lasers,” J. Appl. Phys. 58, pp. 2932–2936 (1985).
[CrossRef]

M. Fukuda, K. Wakita, G. Iwane, “Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation,” Jpn. J. Appl. Phys. 20, pp. L87–L90 (1981).
[CrossRef]

Gourley, P. L.

P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
[CrossRef]

Hersee, S. D.

S. D. Hersee, “Long Lived High Radiance LED’s for Fibre Optic Communication Systems,” IEDMWashington, DC, (1977).

Higuchi, H.

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

Hirano, R.

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

Hirtz, P.

K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.

Iwane, G.

M. Fukuda, G. Iwane, “Degradation of Active Region in InGaAsP/InP Buried Heterostructure Lasers,” J. Appl. Phys. 58, pp. 2932–2936 (1985).
[CrossRef]

M. Fukuda, K. Wakita, G. Iwane, “Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation,” Jpn. J. Appl. Phys. 20, pp. L87–L90 (1981).
[CrossRef]

Jones, C. J.

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

Kamierski, K.

K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.

Longerbone, M.

P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
[CrossRef]

Morkoc, H.

P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
[CrossRef]

Namizaki, H.

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

Oomura, E.

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

Palin, M. G.

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

Park, C. A.

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

Razeghi, M.

K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.

Ricciardi, J.

K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.

Rimpler, R.

R. Rimpler, W. Both, “Thermally Induced Stress in GaAs/GaAlAs Stripe Laser Diodes,” IEE Proc. 134Pt. J, 323–325 (1987).

Rosiewicz, A.

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

Sakakibara, Y.

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

Susaki, W.

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

Wakefield, B.

B. Wakefield, “Strain-Enhanced Luminescence Degradation in GaAs/GaAlAs Double-Heterostructure Lasers Revealed by Photoluminescence,” J. Appl. Phys. 50, 7914–7916 (1979).
[CrossRef]

Wakita, K.

M. Fukuda, K. Wakita, G. Iwane, “Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation,” Jpn. J. Appl. Phys. 20, pp. L87–L90 (1981).
[CrossRef]

Zhang, S. L.

P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
[CrossRef]

Appl. Phys. Lett.

P. L. Gourley, M. Longerbone, S. L. Zhang, H. Morkoc, “Photoluminescence Microscopy of Epitaxial GaAs on Si,” Appl. Phys. Lett. 51, 599–601 (1987).
[CrossRef]

IEE Proc.

A. Rosiewicz, C. A. Park, B. R. Butler, C. J. Jones, M. G. Palin, “Improvement of High Reliability Inverted Rib-Waveguide Lasers by the Observation of Degradation Mechanisms,” IEE Proc. 132Pt. J. pp. 319–324 (1985).

R. Rimpler, W. Both, “Thermally Induced Stress in GaAs/GaAlAs Stripe Laser Diodes,” IEE Proc. 134Pt. J, 323–325 (1987).

J. Appl. Phys.

M. Fukuda, G. Iwane, “Degradation of Active Region in InGaAsP/InP Buried Heterostructure Lasers,” J. Appl. Phys. 58, pp. 2932–2936 (1985).
[CrossRef]

S. N. G. Chu et al., “Defect Mechanisms in Degradation of 1.3-μm Wavelength Channelled-Substrate Buried Heterostructure Lasers,” J. Appl. Phys. 63, 611–623 (1988).
[CrossRef]

C. S. Adams, D. T. Cassidy, “Effects of Stress on Threshold, Wavelength and Polarization of the Output of InGaAsP Semiconductor Diode lasers,” J. Appl. Phys. 64, 6631–6638Dec.1 (1988).
[CrossRef]

B. Wakefield, “Strain-Enhanced Luminescence Degradation in GaAs/GaAlAs Double-Heterostructure Lasers Revealed by Photoluminescence,” J. Appl. Phys. 50, 7914–7916 (1979).
[CrossRef]

J. Light. Tech.

M. Fukuda, “Laser and LED Reliability Update,” J. Light. Tech. 6, pp. 1488–1495 (1988).
[CrossRef]

Jpn. J. Appl. Phys.

M. Fukuda, K. Wakita, G. Iwane, “Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation,” Jpn. J. Appl. Phys. 20, pp. L87–L90 (1981).
[CrossRef]

Other

K. Kamierski, P. Hirtz, J. Ricciardi, M. Razeghi, B. De Cremoux, “Validation of MOCVD GalnAsP/InP Laser Fabrication Technology Steps by Photoluminescence Imaging Method,” Defect Recognition and Image Processing in III–V Com pounds, J. P. Fillard Ed., (Amsterdam, 1985) pp. 279–285.

S. D. Hersee, “Long Lived High Radiance LED’s for Fibre Optic Communication Systems,” IEDMWashington, DC, (1977).

E. Oomura, H. Higuchi, R. Hirano, Y. Sakakibara, H. Namizaki, W. Susaki, “Degradation Mechanism in 1.3 μm InGaAsP/InP Buried Crescent Laser Diode,” 15th Conference on Solid State Devices and Materials, Tokyo. pp. 337–340 (1983).

D. T. Cassidy, C. S. Adams, “Polarization of the Output of InGaAsP Semiconductor Diode lasers,” IEEE J. Quantum Electron.25, June (1989), in press.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of experimental apparatus. (b) Magnification of laser and heat sink.

Fig. 2
Fig. 2

Spatially resolved EL map of damaged gain guided laser. The displacement in the vertical direction is proportional to the light intensity detected.

Fig. 3
Fig. 3

Spatially resolved EL map of rejected PBH laser.

Fig. 4
Fig. 4

(a) Three dimensional representation of the degree of polarization along the active region of PBH laser. The data near the facets have been removed. (b) Two dimensional representation.

Fig. 5
Fig. 5

Degree of polarization along the stripe of PBH laser for two different sets of data showing the reproducibility of the results.

Fig. 6
Fig. 6

Degree of polarization along the stripe of PBH laser for different current levels: 20 mA, 30 mA, and 40 mA. The degree of polarization increases with increased current.

Fig. 7
Fig. 7

Degree of polarization along the stripe of (a) PBH laser and (b) gain guided laser. The solid line represents operation 25 mA above threshold, and the dashed line represents operation below threshold.

Fig. 8
Fig. 8

Spatially resolved EL map of PBH laser with bent EL intensity pattern.

Fig. 9
Fig. 9

Spatial variation of peak EL signal across laser.

Fig. 10
Fig. 10

Degree of polarization ρ across the active region of a gain guided laser. The solid line shows ρ before aging. During high temperature aging ρ decreases rapidly and then saturates (dashed lines).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ ( x ) = A exp [ x 2 2 σ 2 ] B exp [ ( x a ) 2 2 σ 2 ] A exp [ x 2 2 σ 2 ] + B exp [ ( x a ) 2 2 σ 2 ] .
ρ ( x ) A B exp ( a x σ 2 ) A + B exp ( a x σ 2 ) .
ρ ( x ) A B A + B + B A + B a x σ 2 .

Metrics