Abstract

We report the results of an investigation into the formation mechanism of laser-induced ripple structures based on obtaining direct images of a surface while the transient heating induced by a KrF excimer laser is still present. These images reveal transient but well-defined periodic heating patterns which, if enough subsequent excimer pulses are incident on the surface, become permanently induced ripple structures. It is evident from these transient images that the surface heating is confined to the induced structures, thus strongly supporting the idea that at low fluences the ripples are formed by localizing surface melting.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
    [CrossRef]
  2. D. C. Emmony, R. P. Howson, L. J. Willis, “Laser Mirror Damage in Germanium,” Appl. Phys. Lett. 23, 598–600 (1973).
    [CrossRef]
  3. G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
    [CrossRef]
  4. N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.
  5. S. E. Clark, “Excimer Laser Induced Modifications of Optical Surfaces,” Ph.D. Thesis, Loughborough U. (1988).
  6. S. E. Clark, D. C. Emmony, “UV Laser Induced Periodic Surface Structures,” Phys. Rev. B40, (1989), in press 1 Aug. issue.
    [CrossRef]
  7. V. I. Emelyanov, E. M. Zemskov, V. N. Seminogov, “Theory of the Formation of ‘Normal’ and ‘Anomalous’ Gratings on the Surfaces of Absorbing Condensed Media Exposed to Laser Radiation,” Sov. J. Quantum Electron. 14, 1515–1521 (1984).
    [CrossRef]
  8. P. A. Temple, M. J. Soileau, “Polarization Charge Model for Laser Induced Ripple Patterns in Dielectric Materials,” IEEE J. Quantum Electron. QE-17, 2067–2072 (1981).
    [CrossRef]
  9. J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
    [CrossRef]
  10. J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
    [CrossRef]
  11. Full details will be available in the Ph.D. Thesis by N. C. Kerr.
  12. D. W. Holder, R. J. North, Schlieren Methods (National Physical Laboratory, England, 1963).
  13. J. F. Young, J. E. Sipe, H. M. van Driel, “Laser Induced Periodic Surface Structures. III: Fluence Regimes, the Role of Feedback and Details of Induced Topography in Germanium,” Phys. Rev B 30, 2001–2015 (1984).
    [CrossRef]
  14. Z. Guosheng, P. M. Fauchet, A. E. Sigman, “Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination,” Phys. Rev. B 26, 5366–5381 (1982).
    [CrossRef]
  15. D. J. Ehrlich, S. R. J. Brueck, J. Y. Tsao, “Time Resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed Laser Annealed Germanium,” Appl. Phys. Lett. 40, 630–632 (1982).
    [CrossRef]
  16. S. E. Clark, N. C. Kerr, D. C. Emmony, “Anomalous Laser Induced Ripple Patterns on Germanium,” J. Phys. D 22, 527–534 (1989).
    [CrossRef]

1989 (1)

S. E. Clark, N. C. Kerr, D. C. Emmony, “Anomalous Laser Induced Ripple Patterns on Germanium,” J. Phys. D 22, 527–534 (1989).
[CrossRef]

1984 (3)

N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.

V. I. Emelyanov, E. M. Zemskov, V. N. Seminogov, “Theory of the Formation of ‘Normal’ and ‘Anomalous’ Gratings on the Surfaces of Absorbing Condensed Media Exposed to Laser Radiation,” Sov. J. Quantum Electron. 14, 1515–1521 (1984).
[CrossRef]

J. F. Young, J. E. Sipe, H. M. van Driel, “Laser Induced Periodic Surface Structures. III: Fluence Regimes, the Role of Feedback and Details of Induced Topography in Germanium,” Phys. Rev B 30, 2001–2015 (1984).
[CrossRef]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

1982 (2)

Z. Guosheng, P. M. Fauchet, A. E. Sigman, “Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

D. J. Ehrlich, S. R. J. Brueck, J. Y. Tsao, “Time Resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed Laser Annealed Germanium,” Appl. Phys. Lett. 40, 630–632 (1982).
[CrossRef]

1981 (1)

P. A. Temple, M. J. Soileau, “Polarization Charge Model for Laser Induced Ripple Patterns in Dielectric Materials,” IEEE J. Quantum Electron. QE-17, 2067–2072 (1981).
[CrossRef]

1978 (1)

G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
[CrossRef]

1973 (1)

D. C. Emmony, R. P. Howson, L. J. Willis, “Laser Mirror Damage in Germanium,” Appl. Phys. Lett. 23, 598–600 (1973).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[CrossRef]

Aiello, P.

N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.

Birnbaum, M.

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[CrossRef]

Brueck, S. R. J.

D. J. Ehrlich, S. R. J. Brueck, J. Y. Tsao, “Time Resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed Laser Annealed Germanium,” Appl. Phys. Lett. 40, 630–632 (1982).
[CrossRef]

Clark, S. E.

S. E. Clark, N. C. Kerr, D. C. Emmony, “Anomalous Laser Induced Ripple Patterns on Germanium,” J. Phys. D 22, 527–534 (1989).
[CrossRef]

S. E. Clark, “Excimer Laser Induced Modifications of Optical Surfaces,” Ph.D. Thesis, Loughborough U. (1988).

S. E. Clark, D. C. Emmony, “UV Laser Induced Periodic Surface Structures,” Phys. Rev. B40, (1989), in press 1 Aug. issue.
[CrossRef]

Ehrlich, D. J.

D. J. Ehrlich, S. R. J. Brueck, J. Y. Tsao, “Time Resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed Laser Annealed Germanium,” Appl. Phys. Lett. 40, 630–632 (1982).
[CrossRef]

Emelyanov, V. I.

V. I. Emelyanov, E. M. Zemskov, V. N. Seminogov, “Theory of the Formation of ‘Normal’ and ‘Anomalous’ Gratings on the Surfaces of Absorbing Condensed Media Exposed to Laser Radiation,” Sov. J. Quantum Electron. 14, 1515–1521 (1984).
[CrossRef]

Emmony, D. C.

S. E. Clark, N. C. Kerr, D. C. Emmony, “Anomalous Laser Induced Ripple Patterns on Germanium,” J. Phys. D 22, 527–534 (1989).
[CrossRef]

D. C. Emmony, R. P. Howson, L. J. Willis, “Laser Mirror Damage in Germanium,” Appl. Phys. Lett. 23, 598–600 (1973).
[CrossRef]

S. E. Clark, D. C. Emmony, “UV Laser Induced Periodic Surface Structures,” Phys. Rev. B40, (1989), in press 1 Aug. issue.
[CrossRef]

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, A. E. Sigman, “Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, A. E. Sigman, “Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

Harris, G. L.

G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
[CrossRef]

Holder, D. W.

D. W. Holder, R. J. North, Schlieren Methods (National Physical Laboratory, England, 1963).

Howson, R. P.

D. C. Emmony, R. P. Howson, L. J. Willis, “Laser Mirror Damage in Germanium,” Appl. Phys. Lett. 23, 598–600 (1973).
[CrossRef]

Kerr, N. C.

S. E. Clark, N. C. Kerr, D. C. Emmony, “Anomalous Laser Induced Ripple Patterns on Germanium,” J. Phys. D 22, 527–534 (1989).
[CrossRef]

Lo, C. A.

G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
[CrossRef]

Mansour, N.

N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.

Marcus, G. N.

G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
[CrossRef]

McFarlane, R. A.

G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
[CrossRef]

North, R. J.

D. W. Holder, R. J. North, Schlieren Methods (National Physical Laboratory, England, 1963).

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

Reali, G.

N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.

Seminogov, V. N.

V. I. Emelyanov, E. M. Zemskov, V. N. Seminogov, “Theory of the Formation of ‘Normal’ and ‘Anomalous’ Gratings on the Surfaces of Absorbing Condensed Media Exposed to Laser Radiation,” Sov. J. Quantum Electron. 14, 1515–1521 (1984).
[CrossRef]

Sigman, A. E.

Z. Guosheng, P. M. Fauchet, A. E. Sigman, “Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

Sipe, J. E.

J. F. Young, J. E. Sipe, H. M. van Driel, “Laser Induced Periodic Surface Structures. III: Fluence Regimes, the Role of Feedback and Details of Induced Topography in Germanium,” Phys. Rev B 30, 2001–2015 (1984).
[CrossRef]

J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

Soileau, M. J.

N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.

P. A. Temple, M. J. Soileau, “Polarization Charge Model for Laser Induced Ripple Patterns in Dielectric Materials,” IEEE J. Quantum Electron. QE-17, 2067–2072 (1981).
[CrossRef]

Temple, P. A.

P. A. Temple, M. J. Soileau, “Polarization Charge Model for Laser Induced Ripple Patterns in Dielectric Materials,” IEEE J. Quantum Electron. QE-17, 2067–2072 (1981).
[CrossRef]

Tsao, J. Y.

D. J. Ehrlich, S. R. J. Brueck, J. Y. Tsao, “Time Resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed Laser Annealed Germanium,” Appl. Phys. Lett. 40, 630–632 (1982).
[CrossRef]

van Driel, H. M.

J. F. Young, J. E. Sipe, H. M. van Driel, “Laser Induced Periodic Surface Structures. III: Fluence Regimes, the Role of Feedback and Details of Induced Topography in Germanium,” Phys. Rev B 30, 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

van Driel, M. H.

J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

Willis, L. J.

D. C. Emmony, R. P. Howson, L. J. Willis, “Laser Mirror Damage in Germanium,” Appl. Phys. Lett. 23, 598–600 (1973).
[CrossRef]

Young, J. F.

J. F. Young, J. E. Sipe, H. M. van Driel, “Laser Induced Periodic Surface Structures. III: Fluence Regimes, the Role of Feedback and Details of Induced Topography in Germanium,” Phys. Rev B 30, 2001–2015 (1984).
[CrossRef]

J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

Zemskov, E. M.

V. I. Emelyanov, E. M. Zemskov, V. N. Seminogov, “Theory of the Formation of ‘Normal’ and ‘Anomalous’ Gratings on the Surfaces of Absorbing Condensed Media Exposed to Laser Radiation,” Sov. J. Quantum Electron. 14, 1515–1521 (1984).
[CrossRef]

Appl. Phys. Lett. (3)

D. C. Emmony, R. P. Howson, L. J. Willis, “Laser Mirror Damage in Germanium,” Appl. Phys. Lett. 23, 598–600 (1973).
[CrossRef]

G. N. Marcus, G. L. Harris, C. A. Lo, R. A. McFarlane, “On the Origin of Periodic Surface Structures of Laser-Annealed Semiconductors,” Appl. Phys. Lett. 33, 453–455 (1978).
[CrossRef]

D. J. Ehrlich, S. R. J. Brueck, J. Y. Tsao, “Time Resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed Laser Annealed Germanium,” Appl. Phys. Lett. 40, 630–632 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. A. Temple, M. J. Soileau, “Polarization Charge Model for Laser Induced Ripple Patterns in Dielectric Materials,” IEEE J. Quantum Electron. QE-17, 2067–2072 (1981).
[CrossRef]

J. Appl. Phys. (1)

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[CrossRef]

J. Phys. D (1)

S. E. Clark, N. C. Kerr, D. C. Emmony, “Anomalous Laser Induced Ripple Patterns on Germanium,” J. Phys. D 22, 527–534 (1989).
[CrossRef]

Natl. Bur. Stand. (U.S.) Spec. Publ. (1)

N. Mansour, G. Reali, P. Aiello, M. J. Soileau, “Laser Generated Ripple Patterns on Dielectrics and Intermediate Band Gap Semiconductors,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727 (1984), pp. 137–146, and references therein.

Phys. Rev B (1)

J. F. Young, J. E. Sipe, H. M. van Driel, “Laser Induced Periodic Surface Structures. III: Fluence Regimes, the Role of Feedback and Details of Induced Topography in Germanium,” Phys. Rev B 30, 2001–2015 (1984).
[CrossRef]

Phys. Rev. B (3)

Z. Guosheng, P. M. Fauchet, A. E. Sigman, “Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser Induced Periodic Surface Structures. I: Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, M. H. van Driel, J. E. Sipe, “Laser Induced Periodic Surface Structures. II: Experiments on Ge, Si, Al and Brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. I. Emelyanov, E. M. Zemskov, V. N. Seminogov, “Theory of the Formation of ‘Normal’ and ‘Anomalous’ Gratings on the Surfaces of Absorbing Condensed Media Exposed to Laser Radiation,” Sov. J. Quantum Electron. 14, 1515–1521 (1984).
[CrossRef]

Other (4)

Full details will be available in the Ph.D. Thesis by N. C. Kerr.

D. W. Holder, R. J. North, Schlieren Methods (National Physical Laboratory, England, 1963).

S. E. Clark, “Excimer Laser Induced Modifications of Optical Surfaces,” Ph.D. Thesis, Loughborough U. (1988).

S. E. Clark, D. C. Emmony, “UV Laser Induced Periodic Surface Structures,” Phys. Rev. B40, (1989), in press 1 Aug. issue.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

LIRS on GaAs induced by S-polarized excimer radiation incident at 60°, magnification of 900×. The spacing and orientation of the ripples is in good agreement with that predicted by the theory in I.

Fig. 2
Fig. 2

Schematic of the experimental configuration.

Fig. 3
Fig. 3

Transient rippling on GaAs induced by S-polarized excimer radiation incident at 60°, magnification of 370×. Ripple spacing is 2.2 μm. (a) Surface after first permanent ripples have formed; (b) transient heating on the next excimer pulse; (c) surface a long time after the excimer pulse in (b); (d) net transient heating; (e) net permanent rippling. Note that, although there was a permanent change on the right-hand side of (e), there was essentially no change in the middle and on the left-hand side where reference to (d) shows large areas of transient periodic heating, i.e., transient rippling. (f) Nonrippled initial surface; (g) transient heating; (h) surface a long time after the excimer pulse in (g); (i) net transient heating; (j) net permanent rippling. Note that in this case the ripples are purely transient and have been induced on a surface with no initial permanent rippling.

Fig. 4
Fig. 4

Transient rippling on GaAs induced by S-polarized excimer radiation incident at 60°, magnification of 960×. Ripple spacing is 2.2 μm. (a) Net permanent change in obtaining (b); (b) net transient heating after thirty incident excimer pulses; (c) net permanent rippling after thirty-five incident excimer pulses. Close inspection of (b) and (c) shows that the areas of transient rippling have become well-defined permanent ripples.

Fig. 5
Fig. 5

Transient rippling on Ge induced by S-polarized light incident at 60°, magnification of 360×. Ripple spacing is 6 μm. (a) net transient rippling and (b) net permanent rippling. The transient ripples (b) are at the top right-hand corner where it can be seen that three distinct transient ripples are induced; (b) shows that the ripples were indeed transiently induced.

Fig. 6
Fig. 6

Transient rippling observed in Fig. 5: (a) profile obtained along the white vertical line and (b) profile of transient heating where the vertical axis is the intensity (grey level) of the image and the horizontal axis is the position in pixels from the top. Note that a pixel grey level of 31 corresponds to no change between the initial and transient images that were processed to yield (a). It is apparent that between the fringes there is no surface heating as the pixel grey level is 31.

Fig. 7
Fig. 7

Transient heating on a well-rippled Ge surface, magnification of 550×: (a) profile obtained along the white vertical line and (b) profile of transient heating. Again there is essentially no heating (i.e., pixel grey level 31) between the ripples, particularly those at the bottom of (a) pixel positions are ≈200–250 in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ / ( 1 ± sin θ ) ,

Metrics