Abstract

A new configuration of a pulsed white light dye laser system is proposed. Design and detailed calculation of the laser cavity are presented. A special coated prism is used inside the cavity to guide the tricolor light. The output beam is expected to be a colinear balanced white light. Numerical values of laser design parameters are also given as an example.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Fujii, “Recent Developments and Applications of White Lasers,” in Proceedings of International Conference on Lasers 1987, F. J. Duarte, Ed. (STS Press, McLean, VA, 1988), pp. 285–290.
  2. E. T. Leonard, M. A. Yaffee, K. W. Billman, “White Light Laser,” Appl. Opt. 9, 1209 (1970).
    [CrossRef] [PubMed]
  3. S. A. Ahmed, W. M. Keeffe, “Parametric and Discharge Studies of Three Colour Gas Mix-Ion Lasers,” J. Appl. Phys. 45, 182–186 (1974).
    [CrossRef]
  4. N. V. Sabotino, P. K. Telbizov, “Mixed Gas Laser of the Three Basic Colours,” Opto-electronics 6, 185 (1974).
    [CrossRef]
  5. K. Fujii, T. Takahashi, Y. Asami, “Hollow-Cathode Type CW White Light Laser,” IEEE J. Quantum Electron. QE-11, 114 (1975).
  6. K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
    [CrossRef]
  7. K. Fujii, S. Miyazawa, T. Oikawa, “A New Design Concept for Hollow-Cathode White Light Laser,” IEEE J. Quantum Electron. QE-16, 590 (1980).
    [CrossRef]
  8. J. A. Piper, “Simultaneous cw Laser Oscillation on Transitions of Cd+ and I+ in a Hollow-Cathode He–CdI2 Discharge,” Opt. Commun. 19, 189 (1976).
    [CrossRef]
  9. M. E. Marhic, M. Epstein, “White Light Flash Lamp Pumped Dye Laser for Photography Through Endoscope,” Opt. Commun. 45, 21 (1983).
    [CrossRef]
  10. T. Kasuya, T. Suzuki, K. Shimoda, “A Prism Anamorphic System for Gaussian Beam Expander,” Appl. Phys. 17, 131 (1978).
    [CrossRef]
  11. J. -P. Tache, “Ray Matrices for Tilted Interfaces in Laser Resonators,” Appl. Opt. 26, 427–429 (1987).
    [CrossRef] [PubMed]
  12. H. Kogelnik, T. Li, “Laser Beams and Resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  13. J. Turunen, “Astigmatism in Laser Beam Optical Systems,” Appl. Opt. 25, 2908–2911 (1986).
    [CrossRef] [PubMed]

1987 (1)

1986 (1)

1983 (1)

M. E. Marhic, M. Epstein, “White Light Flash Lamp Pumped Dye Laser for Photography Through Endoscope,” Opt. Commun. 45, 21 (1983).
[CrossRef]

1980 (1)

K. Fujii, S. Miyazawa, T. Oikawa, “A New Design Concept for Hollow-Cathode White Light Laser,” IEEE J. Quantum Electron. QE-16, 590 (1980).
[CrossRef]

1979 (1)

K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
[CrossRef]

1978 (1)

T. Kasuya, T. Suzuki, K. Shimoda, “A Prism Anamorphic System for Gaussian Beam Expander,” Appl. Phys. 17, 131 (1978).
[CrossRef]

1976 (1)

J. A. Piper, “Simultaneous cw Laser Oscillation on Transitions of Cd+ and I+ in a Hollow-Cathode He–CdI2 Discharge,” Opt. Commun. 19, 189 (1976).
[CrossRef]

1975 (1)

K. Fujii, T. Takahashi, Y. Asami, “Hollow-Cathode Type CW White Light Laser,” IEEE J. Quantum Electron. QE-11, 114 (1975).

1974 (2)

S. A. Ahmed, W. M. Keeffe, “Parametric and Discharge Studies of Three Colour Gas Mix-Ion Lasers,” J. Appl. Phys. 45, 182–186 (1974).
[CrossRef]

N. V. Sabotino, P. K. Telbizov, “Mixed Gas Laser of the Three Basic Colours,” Opto-electronics 6, 185 (1974).
[CrossRef]

1970 (1)

1966 (1)

Ahmed, S. A.

S. A. Ahmed, W. M. Keeffe, “Parametric and Discharge Studies of Three Colour Gas Mix-Ion Lasers,” J. Appl. Phys. 45, 182–186 (1974).
[CrossRef]

Asami, Y.

K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
[CrossRef]

K. Fujii, T. Takahashi, Y. Asami, “Hollow-Cathode Type CW White Light Laser,” IEEE J. Quantum Electron. QE-11, 114 (1975).

Billman, K. W.

Epstein, M.

M. E. Marhic, M. Epstein, “White Light Flash Lamp Pumped Dye Laser for Photography Through Endoscope,” Opt. Commun. 45, 21 (1983).
[CrossRef]

Fujii, K.

K. Fujii, S. Miyazawa, T. Oikawa, “A New Design Concept for Hollow-Cathode White Light Laser,” IEEE J. Quantum Electron. QE-16, 590 (1980).
[CrossRef]

K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
[CrossRef]

K. Fujii, T. Takahashi, Y. Asami, “Hollow-Cathode Type CW White Light Laser,” IEEE J. Quantum Electron. QE-11, 114 (1975).

K. Fujii, “Recent Developments and Applications of White Lasers,” in Proceedings of International Conference on Lasers 1987, F. J. Duarte, Ed. (STS Press, McLean, VA, 1988), pp. 285–290.

Kasuya, T.

T. Kasuya, T. Suzuki, K. Shimoda, “A Prism Anamorphic System for Gaussian Beam Expander,” Appl. Phys. 17, 131 (1978).
[CrossRef]

Keeffe, W. M.

S. A. Ahmed, W. M. Keeffe, “Parametric and Discharge Studies of Three Colour Gas Mix-Ion Lasers,” J. Appl. Phys. 45, 182–186 (1974).
[CrossRef]

Kogelnik, H.

Leonard, E. T.

Li, T.

Marhic, M. E.

M. E. Marhic, M. Epstein, “White Light Flash Lamp Pumped Dye Laser for Photography Through Endoscope,” Opt. Commun. 45, 21 (1983).
[CrossRef]

Miyazawa, S.

K. Fujii, S. Miyazawa, T. Oikawa, “A New Design Concept for Hollow-Cathode White Light Laser,” IEEE J. Quantum Electron. QE-16, 590 (1980).
[CrossRef]

K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
[CrossRef]

Oikawa, T.

K. Fujii, S. Miyazawa, T. Oikawa, “A New Design Concept for Hollow-Cathode White Light Laser,” IEEE J. Quantum Electron. QE-16, 590 (1980).
[CrossRef]

Piper, J. A.

J. A. Piper, “Simultaneous cw Laser Oscillation on Transitions of Cd+ and I+ in a Hollow-Cathode He–CdI2 Discharge,” Opt. Commun. 19, 189 (1976).
[CrossRef]

Sabotino, N. V.

N. V. Sabotino, P. K. Telbizov, “Mixed Gas Laser of the Three Basic Colours,” Opto-electronics 6, 185 (1974).
[CrossRef]

Shimoda, K.

T. Kasuya, T. Suzuki, K. Shimoda, “A Prism Anamorphic System for Gaussian Beam Expander,” Appl. Phys. 17, 131 (1978).
[CrossRef]

Suzuki, T.

T. Kasuya, T. Suzuki, K. Shimoda, “A Prism Anamorphic System for Gaussian Beam Expander,” Appl. Phys. 17, 131 (1978).
[CrossRef]

Tache, J. -P.

Takahashi, T.

K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
[CrossRef]

K. Fujii, T. Takahashi, Y. Asami, “Hollow-Cathode Type CW White Light Laser,” IEEE J. Quantum Electron. QE-11, 114 (1975).

Telbizov, P. K.

N. V. Sabotino, P. K. Telbizov, “Mixed Gas Laser of the Three Basic Colours,” Opto-electronics 6, 185 (1974).
[CrossRef]

Turunen, J.

Yaffee, M. A.

Appl. Opt. (4)

Appl. Phys. (1)

T. Kasuya, T. Suzuki, K. Shimoda, “A Prism Anamorphic System for Gaussian Beam Expander,” Appl. Phys. 17, 131 (1978).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Fujii, T. Takahashi, Y. Asami, “Hollow-Cathode Type CW White Light Laser,” IEEE J. Quantum Electron. QE-11, 114 (1975).

K. Fujii, S. Miyazawa, T. Takahashi, Y. Asami, “Design of White Light Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35 (1979).
[CrossRef]

K. Fujii, S. Miyazawa, T. Oikawa, “A New Design Concept for Hollow-Cathode White Light Laser,” IEEE J. Quantum Electron. QE-16, 590 (1980).
[CrossRef]

J. Appl. Phys. (1)

S. A. Ahmed, W. M. Keeffe, “Parametric and Discharge Studies of Three Colour Gas Mix-Ion Lasers,” J. Appl. Phys. 45, 182–186 (1974).
[CrossRef]

Opt. Commun. (2)

J. A. Piper, “Simultaneous cw Laser Oscillation on Transitions of Cd+ and I+ in a Hollow-Cathode He–CdI2 Discharge,” Opt. Commun. 19, 189 (1976).
[CrossRef]

M. E. Marhic, M. Epstein, “White Light Flash Lamp Pumped Dye Laser for Photography Through Endoscope,” Opt. Commun. 45, 21 (1983).
[CrossRef]

Opto-electronics (1)

N. V. Sabotino, P. K. Telbizov, “Mixed Gas Laser of the Three Basic Colours,” Opto-electronics 6, 185 (1974).
[CrossRef]

Other (1)

K. Fujii, “Recent Developments and Applications of White Lasers,” in Proceedings of International Conference on Lasers 1987, F. J. Duarte, Ed. (STS Press, McLean, VA, 1988), pp. 285–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Arrangement of the pulsed white light dye laser system. P is the multilayer coated prism, DC1, DC2 and DC3 are the dye cells. M1, M2 and M3 are flat plane mirrors with 100% reflectance. M0 is the output mirror, MC1 and MC2 are the thin film filters, d0, d1, d2 and d3 are the length parameters of the cavity.

Fig. 2
Fig. 2

Optical resonator for the blue line. (a) Propagation of paraxial ray reflected by the prism. (b) An equivalent plano–concave cavity configuration with cavity length d.

Fig. 3
Fig. 3

Optical resonator for the red line. (a) Propagation of paraxial ray through the prism. (b) Equivalent plano–concave cavity configuration in the xz plane. (c) The same as (b), but in the yz plane.

Fig. 4
Fig. 4

Optical resonator for the green line. (a) Propagation of paraxial ray through the prism. (b) & (c) Equivalent plano–concave cavity configurations in the xz and yz planes, respectively.

Fig. 5
Fig. 5

Reflectance R of oblique incidence (angle θ1 = 35°) of the thin film layers made up of a 0.184H 0.177L4(HL) 0.260H 0.247L 0.243H 0.257L 0.287H 0.244L4(HL) 0.255H 0.245L 0.158H 0.567L (H and L denote the quarterwave layer of the high index and the low index materials, respectively). (nH = 2.35, nL = 1.38) on the transparent substrate (ns = 1.512) is a function of wavelength. The central wavelength with normal incidence is 425 nm.

Fig. 6
Fig. 6

Reflectance R of oblique incidence (θ3 = 22.7°) of the thin film layers made up of 0.327L 0.124H 0.254L 0.248H 0.236L2(HL)H 0.254L 0.244H 0.246L 0.258H3(LH) 0.245L 0.267H 0.264L 0.117H (nH = 2.35, nL = 1.38) on the transparent substrate (ns = 1.512) as a function of wavelength. The central wavelength with normal incidence is 497 nm.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

[ x 2 x ˙ 2 ] = [ 1 0 0 1 ] [ x 1 x ˙ 1 ]
[ 1 0 0 1 ]
d = d x 1 = d y 1 = d 0 + d 1 .
[ M 2 L x 2 0 1 M 2 ]
M 2 = cos θ 2 cos θ 4 cos θ 1 cos θ 3 ,
L x 2 = S 1 sin α cos θ 1 cos θ 4 n cos θ 2 cos 2 θ 3 .
d x 2 = d 0 + d 2 M 2 2 + L x 2 M 2 .
[ 1 L y 2 0 1 ]
L y 2 = S 1 sin α n cos θ 3 .
d y 2 = d 0 + d 2 + L y 2 .
[ M 3 L x 3 0 1 M 3 ]
L x 3 = ( S 1 sin α cos θ 3 + S 2 sin β cos θ 5 ) cos θ 1 cos θ 6 n cos θ 2 cos θ 5 ,
M 3 = cos θ 2 cos θ 6 cos θ 1 cos θ 5 .
d x 3 = d 0 + d 3 M 3 2 + L x 3 M 3 ,
L y 3 = S 1 sin α n cos θ 3 + S 2 sin β n cos θ 5 .
d y 3 = d 0 + d 3 + L y 3 .
w x I 4 = ( λ R 0 π ) 2 d x R 0 d x ,
w y 1 4 = ( λ R 0 π ) 2 d y R 0 d y ,
w x 0 2 = λ π ( R 0 d x ) d x ,
w y 0 2 = λ π ( R 0 d y ) d y .
0 < d x < R 0 ,
0 < d y < R 0 ,
f m n p f 0 = ( p + 1 ) + 1 π ( m + 1 2 ) cos 1 ( 1 d x R 0 ) + 1 π ( n + 1 2 ) cos 1 ( 1 d y R 0 ) ,
d cav = { d 0 + n S 1 sin α cos θ 3 + d 2 for the red line cavity d 0 + n S 1 sin α cos θ 3 + n S 2 sin β cos θ 5 + d 3 for the green line cavity ,

Metrics