Abstract

Radiative energy transfer in three different laser dye mixtures composed of (1) dichlorofluorescein (donor) and DODC (acceptor), (2) dichlorofluorescein (donor) and RhB (acceptor), and (3) coumarine (donor) and RhB (acceptor) have been studied under steady state excitation conditions. Analytical expressions have been developed to predict steady state fluorescence and hence gain line shape of laser dye mixtures using computer simulation. The theoretical predictions derived are generally in excellent agreement with experimental results, which confirm that at the mixture concentrations needed for lasing, radiative transfer is the dominant energy transfer mechanism. The method developed is effective and practical for predicting laser gain lineshapes (and hence tunability) as well as predicting fluorescence emission spectra of dye mixtures.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Forster, “Transfer Mechanisms of Electronic Excitation,” Discuss. Faraday Soc., 27, 7–18 (1959).
  2. T. Forster, “Excitation Transfer,” Ann. Phys. 2, 12–19 (1948).
  3. D. L. Dexter, “A Theory of Sensitized Luminescence,” J. Chem. Phys., 21, 836–850 (1953).
    [CrossRef]
  4. M. D. Galanin, “The problem of the Effect of Concentrations on the Luminescence of Solutions,” Sov. Phys. JETP 1, 317–325 (1955).
  5. J. B. Birks, “Energy Transfer in Organic Systems I,” J. Phys. B: 1, 946–955 (1948).
    [CrossRef]
  6. J. B. Birks, S. Georghious, “Energy Transfer in Organic Systems VI,” J. Phys. B 1, 958–965 (1968).
    [CrossRef]
  7. J. B. Birks, M. S. S. C. P. Leite, “Effects of Diffusion on Transfer Efficiency,” J. Phys. B: 3, 513–525 (1970).
    [CrossRef]
  8. J. B. Birks, M. S. S. C. P. Leite, “Energy Transfer in Organic Systems VII,” J. Phys. B: Atom molec. Phys., 24, 417–424 (1970).
    [CrossRef]
  9. N. J. Turro, Modern Molecular Photochemistry (Benjamin, New York, 1978).
  10. D. D. Bhawalkar, L. Pandit, “Improving the pumping Efficiency of a Nd Glass Laser Using Dyes,” IEEE J. Quantum Electron. QE-9, 43–46 (1973).
    [CrossRef]
  11. J. M. Drake, E. M. Tam, R. I. Morse, “The Use of Light Converters to Increase the Power of Flashlamp-Pumped Dye Laser,” IEEE J. Quantum Electron. QE-8, 92–96 (1972).
    [CrossRef]
  12. S. A. Ahmed, J. S. Gergely, “Energy Transfer Organic Dye Mixture Lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
    [CrossRef]
  13. J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

1974 (1)

S. A. Ahmed, J. S. Gergely, “Energy Transfer Organic Dye Mixture Lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

1973 (1)

D. D. Bhawalkar, L. Pandit, “Improving the pumping Efficiency of a Nd Glass Laser Using Dyes,” IEEE J. Quantum Electron. QE-9, 43–46 (1973).
[CrossRef]

1972 (1)

J. M. Drake, E. M. Tam, R. I. Morse, “The Use of Light Converters to Increase the Power of Flashlamp-Pumped Dye Laser,” IEEE J. Quantum Electron. QE-8, 92–96 (1972).
[CrossRef]

1970 (2)

J. B. Birks, M. S. S. C. P. Leite, “Effects of Diffusion on Transfer Efficiency,” J. Phys. B: 3, 513–525 (1970).
[CrossRef]

J. B. Birks, M. S. S. C. P. Leite, “Energy Transfer in Organic Systems VII,” J. Phys. B: Atom molec. Phys., 24, 417–424 (1970).
[CrossRef]

1968 (1)

J. B. Birks, S. Georghious, “Energy Transfer in Organic Systems VI,” J. Phys. B 1, 958–965 (1968).
[CrossRef]

1959 (1)

T. Forster, “Transfer Mechanisms of Electronic Excitation,” Discuss. Faraday Soc., 27, 7–18 (1959).

1955 (1)

M. D. Galanin, “The problem of the Effect of Concentrations on the Luminescence of Solutions,” Sov. Phys. JETP 1, 317–325 (1955).

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence,” J. Chem. Phys., 21, 836–850 (1953).
[CrossRef]

1948 (2)

J. B. Birks, “Energy Transfer in Organic Systems I,” J. Phys. B: 1, 946–955 (1948).
[CrossRef]

T. Forster, “Excitation Transfer,” Ann. Phys. 2, 12–19 (1948).

Ahmed, S. A.

S. A. Ahmed, J. S. Gergely, “Energy Transfer Organic Dye Mixture Lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

Bhawalkar, D. D.

D. D. Bhawalkar, L. Pandit, “Improving the pumping Efficiency of a Nd Glass Laser Using Dyes,” IEEE J. Quantum Electron. QE-9, 43–46 (1973).
[CrossRef]

Birks, J. B.

J. B. Birks, M. S. S. C. P. Leite, “Energy Transfer in Organic Systems VII,” J. Phys. B: Atom molec. Phys., 24, 417–424 (1970).
[CrossRef]

J. B. Birks, M. S. S. C. P. Leite, “Effects of Diffusion on Transfer Efficiency,” J. Phys. B: 3, 513–525 (1970).
[CrossRef]

J. B. Birks, S. Georghious, “Energy Transfer in Organic Systems VI,” J. Phys. B 1, 958–965 (1968).
[CrossRef]

J. B. Birks, “Energy Transfer in Organic Systems I,” J. Phys. B: 1, 946–955 (1948).
[CrossRef]

J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence,” J. Chem. Phys., 21, 836–850 (1953).
[CrossRef]

Drake, J. M.

J. M. Drake, E. M. Tam, R. I. Morse, “The Use of Light Converters to Increase the Power of Flashlamp-Pumped Dye Laser,” IEEE J. Quantum Electron. QE-8, 92–96 (1972).
[CrossRef]

Forster, T.

T. Forster, “Transfer Mechanisms of Electronic Excitation,” Discuss. Faraday Soc., 27, 7–18 (1959).

T. Forster, “Excitation Transfer,” Ann. Phys. 2, 12–19 (1948).

Galanin, M. D.

M. D. Galanin, “The problem of the Effect of Concentrations on the Luminescence of Solutions,” Sov. Phys. JETP 1, 317–325 (1955).

Georghious, S.

J. B. Birks, S. Georghious, “Energy Transfer in Organic Systems VI,” J. Phys. B 1, 958–965 (1968).
[CrossRef]

Gergely, J. S.

S. A. Ahmed, J. S. Gergely, “Energy Transfer Organic Dye Mixture Lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

Leite, M. S. S. C. P.

J. B. Birks, M. S. S. C. P. Leite, “Effects of Diffusion on Transfer Efficiency,” J. Phys. B: 3, 513–525 (1970).
[CrossRef]

J. B. Birks, M. S. S. C. P. Leite, “Energy Transfer in Organic Systems VII,” J. Phys. B: Atom molec. Phys., 24, 417–424 (1970).
[CrossRef]

Morse, R. I.

J. M. Drake, E. M. Tam, R. I. Morse, “The Use of Light Converters to Increase the Power of Flashlamp-Pumped Dye Laser,” IEEE J. Quantum Electron. QE-8, 92–96 (1972).
[CrossRef]

Pandit, L.

D. D. Bhawalkar, L. Pandit, “Improving the pumping Efficiency of a Nd Glass Laser Using Dyes,” IEEE J. Quantum Electron. QE-9, 43–46 (1973).
[CrossRef]

Tam, E. M.

J. M. Drake, E. M. Tam, R. I. Morse, “The Use of Light Converters to Increase the Power of Flashlamp-Pumped Dye Laser,” IEEE J. Quantum Electron. QE-8, 92–96 (1972).
[CrossRef]

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (Benjamin, New York, 1978).

Ann. Phys. (1)

T. Forster, “Excitation Transfer,” Ann. Phys. 2, 12–19 (1948).

Discuss. Faraday Soc. (1)

T. Forster, “Transfer Mechanisms of Electronic Excitation,” Discuss. Faraday Soc., 27, 7–18 (1959).

IEEE J. Quantum Electron. (2)

D. D. Bhawalkar, L. Pandit, “Improving the pumping Efficiency of a Nd Glass Laser Using Dyes,” IEEE J. Quantum Electron. QE-9, 43–46 (1973).
[CrossRef]

J. M. Drake, E. M. Tam, R. I. Morse, “The Use of Light Converters to Increase the Power of Flashlamp-Pumped Dye Laser,” IEEE J. Quantum Electron. QE-8, 92–96 (1972).
[CrossRef]

J. Chem. Phys. (2)

S. A. Ahmed, J. S. Gergely, “Energy Transfer Organic Dye Mixture Lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

D. L. Dexter, “A Theory of Sensitized Luminescence,” J. Chem. Phys., 21, 836–850 (1953).
[CrossRef]

J. Phys. B (1)

J. B. Birks, S. Georghious, “Energy Transfer in Organic Systems VI,” J. Phys. B 1, 958–965 (1968).
[CrossRef]

J. Phys. B: (2)

J. B. Birks, M. S. S. C. P. Leite, “Effects of Diffusion on Transfer Efficiency,” J. Phys. B: 3, 513–525 (1970).
[CrossRef]

J. B. Birks, “Energy Transfer in Organic Systems I,” J. Phys. B: 1, 946–955 (1948).
[CrossRef]

J. Phys. B: Atom molec. Phys. (1)

J. B. Birks, M. S. S. C. P. Leite, “Energy Transfer in Organic Systems VII,” J. Phys. B: Atom molec. Phys., 24, 417–424 (1970).
[CrossRef]

Sov. Phys. JETP (1)

M. D. Galanin, “The problem of the Effect of Concentrations on the Luminescence of Solutions,” Sov. Phys. JETP 1, 317–325 (1955).

Other (2)

N. J. Turro, Modern Molecular Photochemistry (Benjamin, New York, 1978).

J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Overlap intergral of dichlorofluorescein (donor) and DODC (acceptor).

Fig. 2
Fig. 2

Overlap intergral of dichlorofluorescein (donor) and rhodamine B (acceptor).

Fig. 3
Fig. 3

Fluorescence yield of: Rhodamine B-dichlorofluorescein in mixture DODC-dichlorofluorescein mixture.

Fig. 4
Fig. 4

Overlap intergral of coumarine (donor) and rhodamine B (acceptor).

Fig. 5
Fig. 5

Fluorescence spectra of 1 × 10−3 M/liter coumarine (donor) and 1 × 10−3 M/liter rhodamine B (acceptor) in ethanol.

Fig. 6
Fig. 6

Predicted fluorescence, absorption and gain of dye mixture: 1 × 10−3 coumarine (donor) and 1 × 10−3 RhB (acceptor) in ethanol and observed laser spectrum.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α = 2 . 3 X [ A ] 0 F d ( μ ) E a ( μ ) d μ ,
F o d = I o [ 1 exp ( 2 . 3 [ D ] X E d ] Φ o d ,
F a = α F o d Φ o a ,
F d = F o d F o d [ 1 exp ( 2 . 3 [ A ] X E a ) ] .
F t = F d + F a = F o d [ Φ o a α + exp ( 2 . 3 [ A ] X E a ) ] .
P 1 Φ o 1 P 2 Φ o 2 = fluorescence of A 1 in mixture 1 fluorescence of A 2 in mixture 2 ,
P 1 Φ o 1 P 2 Φ o 2 = ( 1945 ) ( 0 . 49 ) ( 1475 ) ( 0 . 97 ) 0 . 666 .
R . H . S . = 117 . 2 180 . 1 0 . 65 ,
[ A ] 3 P 3 Φ o 3 [ A ] 1 P 1 Φ o 1 = fluorescence of A 3 in mixture 3 fluorescence of A 1 in mixture 1 ,
L . H . S . = ( 10 3 ) ( 173 ) ( . 97 ) ( 5 . 52 × 10 5 ) ( 1945 ) ( . 49 ) 3 . 189 ,
R . H . S . = 380 117 . 2 3 . 24 ,
L . H . S . = ( 10 3 ) ( 173 ) ( . 97 ) ( 5 . 52 × 10 5 ) ( 1475 ) ( . 97 ) 2 . 12 ,
R . H . S . = 380 180 . 1 2 . 11 ,

Metrics