Abstract

Simultaneous cw laser emission has been observed in a He–Ne discharge at 611.8-, 629.3-, 632.8-, 635.1-, 640.1-, and 650.0-nm wavelengths. The output power and the mode spectra have been investigated for various operational conditions. Spontaneous mode locking of the different lines has been observed. The Raman transition (650.0 nm) pumped by the strong intracavity radiation at 632.8 nm has been investigated in detail and its relevance for a secondary multiwavelength standard is discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, W. R. Bennett, Atomic Gas Laser Transition Data (IFI/Plenum, New York, 1979).
    [CrossRef]
  2. J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
    [CrossRef]
  3. S. N. Jabr, “Gain and Noise Characteristics of a Continuous-Wave Raman Laser,” Opt. Lett. 12, 690–692 (1987).
    [CrossRef] [PubMed]
  4. Editor’s note, Documents Concerning the New Definition of the Metre,” Metrologia 19, 163–177 (1984).
  5. D. A. Leonard, R. A. Neal, E. T. Gerry, “Observation of a Superradiant Self-Terminating Green Laser Transition in Neon,” Appl. Phys. Lett. 7, 175–175 (1965).
    [CrossRef]
  6. A. Feitisch, T. Müller, H. Welling, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Opertation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THN3; A. Feitisch, “Kontinuierliche Anti-Stokes Raman-Laser,” Thesis, U. Hannover (1988), unpublished.
  7. A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
    [CrossRef]
  8. M. Hohenstatt, “Stimulierte Resonanz-Raman-Streuung hoher Linienschärfe,” Diploma Thesis, U. Heidelberg (1977), unpublished.
  9. Measurement of the reflectivity by M. Bock and H.-J. Miesner is gratefully acknowledged.
  10. J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
    [CrossRef]
  11. J. L. Hall, S. A. Lee, “Interferometric Real-Time Display of cw Dye Laser Wavelength with Sub-Doppler Accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
    [CrossRef]
  12. R. L. Barger, J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 μm Studied by Laser-Saturated Molecular Absorption,” Phys. Rev. Lett. 22, 4–8 (1969); J. L. Hall, “Saturated Absorption Line Shape,” in Fundamental and Applied Laser Physics, Proceedings of the 1971 Esfahan Symposium, M. S. Feld, A. Javan, N. A. Kurnit, Eds. (Wiley, New York, 1973), p. 463.
    [CrossRef]
  13. C. E. Moore, “Atomic Energy Levels,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.35 (1971); reprint of Natl. Bur. Stand. (U.S.) Circ.467 (1949).
  14. The formula given by B. Edlen [B. Edlen, “The Refractive Index of Air,” Metrologia 2, 71–80 (1966)] was used to compute vacuum wavelengths from the wavelengths in air and vice versa.
    [CrossRef]
  15. See, for example, K. G. Zhao, J. Blabla, J. Helmcke, “27I2-Stabilized 3He–22Ne Laser at 640 nm Wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
    [CrossRef]
  16. See, for example, G. Bönsch, “Simultaneous Wavelength Comparison of Iodine-Stabilized Lasers at 515 nm, 633 nm, and 640 nm,” IEEE Trans. Instrum. Meas. IM-34, 248–251 (1985).
    [CrossRef]
  17. See, for example, F. Bayer-Helms, H. Darnedde, G. Exner, “Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur,” Metrologia 21, 49–57 (1985).
    [CrossRef]

1988 (1)

A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
[CrossRef]

1987 (2)

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

S. N. Jabr, “Gain and Noise Characteristics of a Continuous-Wave Raman Laser,” Opt. Lett. 12, 690–692 (1987).
[CrossRef] [PubMed]

1986 (1)

J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
[CrossRef]

1985 (3)

See, for example, K. G. Zhao, J. Blabla, J. Helmcke, “27I2-Stabilized 3He–22Ne Laser at 640 nm Wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[CrossRef]

See, for example, G. Bönsch, “Simultaneous Wavelength Comparison of Iodine-Stabilized Lasers at 515 nm, 633 nm, and 640 nm,” IEEE Trans. Instrum. Meas. IM-34, 248–251 (1985).
[CrossRef]

See, for example, F. Bayer-Helms, H. Darnedde, G. Exner, “Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur,” Metrologia 21, 49–57 (1985).
[CrossRef]

1984 (1)

Editor’s note, Documents Concerning the New Definition of the Metre,” Metrologia 19, 163–177 (1984).

1976 (1)

J. L. Hall, S. A. Lee, “Interferometric Real-Time Display of cw Dye Laser Wavelength with Sub-Doppler Accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

1971 (1)

C. E. Moore, “Atomic Energy Levels,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.35 (1971); reprint of Natl. Bur. Stand. (U.S.) Circ.467 (1949).

1969 (1)

R. L. Barger, J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 μm Studied by Laser-Saturated Molecular Absorption,” Phys. Rev. Lett. 22, 4–8 (1969); J. L. Hall, “Saturated Absorption Line Shape,” in Fundamental and Applied Laser Physics, Proceedings of the 1971 Esfahan Symposium, M. S. Feld, A. Javan, N. A. Kurnit, Eds. (Wiley, New York, 1973), p. 463.
[CrossRef]

1966 (1)

The formula given by B. Edlen [B. Edlen, “The Refractive Index of Air,” Metrologia 2, 71–80 (1966)] was used to compute vacuum wavelengths from the wavelengths in air and vice versa.
[CrossRef]

1965 (1)

D. A. Leonard, R. A. Neal, E. T. Gerry, “Observation of a Superradiant Self-Terminating Green Laser Transition in Neon,” Appl. Phys. Lett. 7, 175–175 (1965).
[CrossRef]

Assendrup, J.

J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
[CrossRef]

Barger, R. L.

R. L. Barger, J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 μm Studied by Laser-Saturated Molecular Absorption,” Phys. Rev. Lett. 22, 4–8 (1969); J. L. Hall, “Saturated Absorption Line Shape,” in Fundamental and Applied Laser Physics, Proceedings of the 1971 Esfahan Symposium, M. S. Feld, A. Javan, N. A. Kurnit, Eds. (Wiley, New York, 1973), p. 463.
[CrossRef]

Bayer-Helms, F.

See, for example, F. Bayer-Helms, H. Darnedde, G. Exner, “Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur,” Metrologia 21, 49–57 (1985).
[CrossRef]

Bennett, W. R.

See, for example, W. R. Bennett, Atomic Gas Laser Transition Data (IFI/Plenum, New York, 1979).
[CrossRef]

Blabla, J.

See, for example, K. G. Zhao, J. Blabla, J. Helmcke, “27I2-Stabilized 3He–22Ne Laser at 640 nm Wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[CrossRef]

Bönsch, G.

See, for example, G. Bönsch, “Simultaneous Wavelength Comparison of Iodine-Stabilized Lasers at 515 nm, 633 nm, and 640 nm,” IEEE Trans. Instrum. Meas. IM-34, 248–251 (1985).
[CrossRef]

Darnedde, H.

See, for example, F. Bayer-Helms, H. Darnedde, G. Exner, “Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur,” Metrologia 21, 49–57 (1985).
[CrossRef]

Edlen, B.

The formula given by B. Edlen [B. Edlen, “The Refractive Index of Air,” Metrologia 2, 71–80 (1966)] was used to compute vacuum wavelengths from the wavelengths in air and vice versa.
[CrossRef]

Exner, G.

See, for example, F. Bayer-Helms, H. Darnedde, G. Exner, “Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur,” Metrologia 21, 49–57 (1985).
[CrossRef]

Feitisch, A.

A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
[CrossRef]

A. Feitisch, T. Müller, H. Welling, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Opertation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THN3; A. Feitisch, “Kontinuierliche Anti-Stokes Raman-Laser,” Thesis, U. Hannover (1988), unpublished.

Gerry, E. T.

D. A. Leonard, R. A. Neal, E. T. Gerry, “Observation of a Superradiant Self-Terminating Green Laser Transition in Neon,” Appl. Phys. Lett. 7, 175–175 (1965).
[CrossRef]

Gläser, M.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Grover, B.

J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
[CrossRef]

Hall, J. L.

J. L. Hall, S. A. Lee, “Interferometric Real-Time Display of cw Dye Laser Wavelength with Sub-Doppler Accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

R. L. Barger, J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 μm Studied by Laser-Saturated Molecular Absorption,” Phys. Rev. Lett. 22, 4–8 (1969); J. L. Hall, “Saturated Absorption Line Shape,” in Fundamental and Applied Laser Physics, Proceedings of the 1971 Esfahan Symposium, M. S. Feld, A. Javan, N. A. Kurnit, Eds. (Wiley, New York, 1973), p. 463.
[CrossRef]

Hall, L.

J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
[CrossRef]

Helmcke, J.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

See, for example, K. G. Zhao, J. Blabla, J. Helmcke, “27I2-Stabilized 3He–22Ne Laser at 640 nm Wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[CrossRef]

Hohenstatt, M.

M. Hohenstatt, “Stimulierte Resonanz-Raman-Streuung hoher Linienschärfe,” Diploma Thesis, U. Heidelberg (1977), unpublished.

Jabr, S.

J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
[CrossRef]

Jabr, S. N.

Lee, S. A.

J. L. Hall, S. A. Lee, “Interferometric Real-Time Display of cw Dye Laser Wavelength with Sub-Doppler Accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

Leonard, D. A.

D. A. Leonard, R. A. Neal, E. T. Gerry, “Observation of a Superradiant Self-Terminating Green Laser Transition in Neon,” Appl. Phys. Lett. 7, 175–175 (1965).
[CrossRef]

Mensing, F.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Moore, C. E.

C. E. Moore, “Atomic Energy Levels,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.35 (1971); reprint of Natl. Bur. Stand. (U.S.) Circ.467 (1949).

Morinaga, A.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Müller, T.

A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
[CrossRef]

A. Feitisch, T. Müller, H. Welling, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Opertation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THN3; A. Feitisch, “Kontinuierliche Anti-Stokes Raman-Laser,” Thesis, U. Hannover (1988), unpublished.

Neal, R. A.

D. A. Leonard, R. A. Neal, E. T. Gerry, “Observation of a Superradiant Self-Terminating Green Laser Transition in Neon,” Appl. Phys. Lett. 7, 175–175 (1965).
[CrossRef]

Schnier, D.

A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
[CrossRef]

Snyder, J. J.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Wellegehausen, B.

A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
[CrossRef]

A. Feitisch, T. Müller, H. Welling, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Opertation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THN3; A. Feitisch, “Kontinuierliche Anti-Stokes Raman-Laser,” Thesis, U. Hannover (1988), unpublished.

Welling, H.

A. Feitisch, T. Müller, H. Welling, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Opertation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THN3; A. Feitisch, “Kontinuierliche Anti-Stokes Raman-Laser,” Thesis, U. Hannover (1988), unpublished.

Zhao, K. G.

See, for example, K. G. Zhao, J. Blabla, J. Helmcke, “27I2-Stabilized 3He–22Ne Laser at 640 nm Wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[CrossRef]

Appl. Phys. B (1)

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New Ultra-High Resolution Dye Laser Spectrometer Utilizing a Non-Tunable Reference Resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Appl. Phys. Lett. (3)

J. L. Hall, S. A. Lee, “Interferometric Real-Time Display of cw Dye Laser Wavelength with Sub-Doppler Accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

J. Assendrup, B. Grover, L. Hall, S. Jabr, “CW Helium–Neon Raman Laser,” Appl. Phys. Lett. 48, 86–88 (1986).
[CrossRef]

D. A. Leonard, R. A. Neal, E. T. Gerry, “Observation of a Superradiant Self-Terminating Green Laser Transition in Neon,” Appl. Phys. Lett. 7, 175–175 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Feitisch, D. Schnier, T. Müller, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Oscillation in an Argon-Laser Plasma,” IEEE J. Quantum Electron. QE-24, 507–511 (1988).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

See, for example, K. G. Zhao, J. Blabla, J. Helmcke, “27I2-Stabilized 3He–22Ne Laser at 640 nm Wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[CrossRef]

See, for example, G. Bönsch, “Simultaneous Wavelength Comparison of Iodine-Stabilized Lasers at 515 nm, 633 nm, and 640 nm,” IEEE Trans. Instrum. Meas. IM-34, 248–251 (1985).
[CrossRef]

Metrologia (3)

See, for example, F. Bayer-Helms, H. Darnedde, G. Exner, “Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur,” Metrologia 21, 49–57 (1985).
[CrossRef]

The formula given by B. Edlen [B. Edlen, “The Refractive Index of Air,” Metrologia 2, 71–80 (1966)] was used to compute vacuum wavelengths from the wavelengths in air and vice versa.
[CrossRef]

Editor’s note, Documents Concerning the New Definition of the Metre,” Metrologia 19, 163–177 (1984).

Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. (1)

C. E. Moore, “Atomic Energy Levels,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.35 (1971); reprint of Natl. Bur. Stand. (U.S.) Circ.467 (1949).

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. L. Barger, J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 μm Studied by Laser-Saturated Molecular Absorption,” Phys. Rev. Lett. 22, 4–8 (1969); J. L. Hall, “Saturated Absorption Line Shape,” in Fundamental and Applied Laser Physics, Proceedings of the 1971 Esfahan Symposium, M. S. Feld, A. Javan, N. A. Kurnit, Eds. (Wiley, New York, 1973), p. 463.
[CrossRef]

Other (4)

See, for example, W. R. Bennett, Atomic Gas Laser Transition Data (IFI/Plenum, New York, 1979).
[CrossRef]

M. Hohenstatt, “Stimulierte Resonanz-Raman-Streuung hoher Linienschärfe,” Diploma Thesis, U. Heidelberg (1977), unpublished.

Measurement of the reflectivity by M. Bock and H.-J. Miesner is gratefully acknowledged.

A. Feitisch, T. Müller, H. Welling, B. Wellegehausen, “Continuous Anti-Stokes Raman Laser Opertation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THN3; A. Feitisch, “Kontinuierliche Anti-Stokes Raman-Laser,” Thesis, U. Hannover (1988), unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy levels of Ne and visible transitions observed simultaneously with the multiwavelength He–Ne laser. The wavelengths are those in air.

Fig. 2
Fig. 2

Experimental setup of the multiline He–Ne laser. The arrow indicates the radiation of a dye laser used for external excitation of the Raman line.

Fig. 3
Fig. 3

Measured output power of the multiline He–Ne laser as a function of the discharge current lasing simultaneously at six different wavelengths: 611.8, 629.3, 632.8, 635.1, 640.1, and 650.0 nm in air. The ordinate scale is not corrected for the efficiency of the grating (≅0.5).

Fig. 4
Fig. 4

Measured output power of the multiline He–Ne laser depending on the length variation x of the (a) laser resonator for λ = 632.8 nm and (b) the Raman line at λ = 650.0 nm. In contrast to Fig. 3, the laser is optimized for emission at λ = 650.0 nm. The ordinate scale is not corrected for the spectral efficiency of the grating (≅0.5).

Fig. 5
Fig. 5

Measured output power of the Raman transition at 650.0 nm depending on the (air) wavelength of dye laser radiation used to excite the Raman transition. Due to the special mirrors, no lasing at any of the other five lines was observed. The inset shows the frequency of the Raman line depending on the frequency of the dye laser radiation used to pump the Raman transition.

Fig. 6
Fig. 6

Mode spectrum of the 611.8-nm line of the multiwavelength He–Ne laser (a) before and (b) after spontaneous mode locking occurred. Similar mode spectra were measured at 632.8 and 650.0 nm.

Metrics