Abstract

We report a theoretical and experimental study of the absorption of wire grid polarizers vs orientation and wavelength. Measurement of absorption and surface damage thresholds are in good agreement with the theory.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bird, M. Parish, “The Wire Grid as a Near-Infrared Polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [Crossref]
  2. M. Hass, M. O’Hara, “Sheet Infrared Transmission Polarizers,” Appl. Opt. 4, 1027–1031 (1965).
    [Crossref]
  3. G. Baldwin, A. E. Heins, “On The Diffraction of a Plane Wave by an Infinite Plane Grating,” Math. Scand. 2, 103–118 (1954).
  4. E. A. Lewis, J. P. Casey, “Electromagnetic Relection and Transmission by Grating of Resistive Wires,” J. Appl. Phys. 23, 605–608 (1952).
    [Crossref]
  5. J. P. Casey, E. A. Lewis, “Interferometer Action of a Parallel Pair of Wire Gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
    [Crossref]
  6. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1979), pp. 338–339.
  7. E. Hagen, H. Rubens, “On the Relation of Reflectivity and Emissivity of Metals with Their Electrical Conductivity,” Ann. Phys. 11, 873–901(1903).
    [Crossref]
  8. H. Ehrenreich, H. R. Philipp, B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132, 1918–1928 (1963).
    [Crossref]
  9. M. Mohebi, A. Said, M. J. Soileau, “Measurement of Optical Damage Threshold of Wire Grid Polarizers at 10.6 μm,” in Proceedings, Boulder Damage Symposium (1985).
  10. M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, E. W. Van Stryland, “Self-Focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396–398 (1985).
    [Crossref] [PubMed]

1985 (1)

1965 (1)

1963 (1)

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

1960 (1)

1954 (1)

G. Baldwin, A. E. Heins, “On The Diffraction of a Plane Wave by an Infinite Plane Grating,” Math. Scand. 2, 103–118 (1954).

1952 (2)

E. A. Lewis, J. P. Casey, “Electromagnetic Relection and Transmission by Grating of Resistive Wires,” J. Appl. Phys. 23, 605–608 (1952).
[Crossref]

J. P. Casey, E. A. Lewis, “Interferometer Action of a Parallel Pair of Wire Gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
[Crossref]

1903 (1)

E. Hagen, H. Rubens, “On the Relation of Reflectivity and Emissivity of Metals with Their Electrical Conductivity,” Ann. Phys. 11, 873–901(1903).
[Crossref]

Aiello, P. F.

Baldwin, G.

G. Baldwin, A. E. Heins, “On The Diffraction of a Plane Wave by an Infinite Plane Grating,” Math. Scand. 2, 103–118 (1954).

Bird, G.

Casey, J. P.

E. A. Lewis, J. P. Casey, “Electromagnetic Relection and Transmission by Grating of Resistive Wires,” J. Appl. Phys. 23, 605–608 (1952).
[Crossref]

J. P. Casey, E. A. Lewis, “Interferometer Action of a Parallel Pair of Wire Gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
[Crossref]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Hagen, E.

E. Hagen, H. Rubens, “On the Relation of Reflectivity and Emissivity of Metals with Their Electrical Conductivity,” Ann. Phys. 11, 873–901(1903).
[Crossref]

Hass, M.

Heins, A. E.

G. Baldwin, A. E. Heins, “On The Diffraction of a Plane Wave by an Infinite Plane Grating,” Math. Scand. 2, 103–118 (1954).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1979), pp. 338–339.

Lewis, E. A.

E. A. Lewis, J. P. Casey, “Electromagnetic Relection and Transmission by Grating of Resistive Wires,” J. Appl. Phys. 23, 605–608 (1952).
[Crossref]

J. P. Casey, E. A. Lewis, “Interferometer Action of a Parallel Pair of Wire Gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
[Crossref]

Mohebi, M.

M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, E. W. Van Stryland, “Self-Focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396–398 (1985).
[Crossref] [PubMed]

M. Mohebi, A. Said, M. J. Soileau, “Measurement of Optical Damage Threshold of Wire Grid Polarizers at 10.6 μm,” in Proceedings, Boulder Damage Symposium (1985).

O’Hara, M.

Parish, M.

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Reali, G.

Rubens, H.

E. Hagen, H. Rubens, “On the Relation of Reflectivity and Emissivity of Metals with Their Electrical Conductivity,” Ann. Phys. 11, 873–901(1903).
[Crossref]

Said, A.

M. Mohebi, A. Said, M. J. Soileau, “Measurement of Optical Damage Threshold of Wire Grid Polarizers at 10.6 μm,” in Proceedings, Boulder Damage Symposium (1985).

Segall, B.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Soileau, M. J.

M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, E. W. Van Stryland, “Self-Focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396–398 (1985).
[Crossref] [PubMed]

M. Mohebi, A. Said, M. J. Soileau, “Measurement of Optical Damage Threshold of Wire Grid Polarizers at 10.6 μm,” in Proceedings, Boulder Damage Symposium (1985).

Van Stryland, E. W.

Ann. Phys. (1)

E. Hagen, H. Rubens, “On the Relation of Reflectivity and Emissivity of Metals with Their Electrical Conductivity,” Ann. Phys. 11, 873–901(1903).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (1)

E. A. Lewis, J. P. Casey, “Electromagnetic Relection and Transmission by Grating of Resistive Wires,” J. Appl. Phys. 23, 605–608 (1952).
[Crossref]

J. Opt. Soc. Am. (2)

Math. Scand. (1)

G. Baldwin, A. E. Heins, “On The Diffraction of a Plane Wave by an Infinite Plane Grating,” Math. Scand. 2, 103–118 (1954).

Opt. Lett. (1)

Phys. Rev. (1)

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Other (2)

M. Mohebi, A. Said, M. J. Soileau, “Measurement of Optical Damage Threshold of Wire Grid Polarizers at 10.6 μm,” in Proceedings, Boulder Damage Symposium (1985).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1979), pp. 338–339.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Surface structure of the wire grid and the model used for calculations.

Fig. 2
Fig. 2

Plot of the ratio of the absorption of parallel polarized light to the absorption of perpendicular polarized light vs wavelength. The solid curve is the theoretical calculation of the ratio, and the points are data from this work.

Fig. 3
Fig. 3

Damage data for the wire grid with AR coating. The threshold for this sample was less than the sample without AR coating by more than a factor of 2.

Fig. 4
Fig. 4

Absorption of the wire grid at 10.6 μm. The greater slope in the data indicates greater absorption when the wires are parallel to the polarization of the incident electric field.

Tables (1)

Tables Icon

Table I Summary of Experimental Results

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Z = Z + 1 / i ω C ,
Z = 1 / σδ + i ( 1 / σδ λ / 2 π c C ) .
J eff = E ( 0 ) / Z , J eff = E ( 0 ) / Z .
R = W / W = | Z | / | Z | R = 1 2 [ 1 + ( 1 1 2 π C δλ 3 π μ C 3 ) 2 ]
C = η ( λ / π μ σ c ) ,
R = 1 2 [ 1 + ( 1 σλ 4 π c η ) 2 ]

Metrics