Abstract

Low-coherence-length light from laser diode sources has applications in extending the useful range of interferometric fiber optic sensors. The characteristics of two commercial low-coherence laser diodes were investigated and compared with theoretical models to determine the operational characteristics of the devices. Reasonable trends in the comparison were seen.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mariller, M. Lequime, “Fiber-Optic ‘White-Light’ Birefringent Temperature sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 121–130 (1987).
  2. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
    [CrossRef]
  3. G. Beheim, “Fibre-Optic Thermometer Using Semiconductor Etalon,” Electron. Lett. 22, 238–239 (1986).
    [CrossRef]
  4. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
    [CrossRef]
  5. S. Saito, Y. Yamamoto, “Direct Observation of Lorentzian Line Shape of Semiconductor Laser and Linewidth Reduction with External Grating Feedback,” Electron. Lett. 17, 325–327 (1981).
    [CrossRef]
  6. T. Okoshi, K. Kikuchi, A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16, 630–632 (1980).
    [CrossRef]
  7. K. Peterman, G. Arnold “Noise and Distortion Characteristics of Semiconductor Lasers in Optical Fiber Communications Systems,” IEEE J. Quantum Electron. QE-18, 543–544 (1982).
    [CrossRef]

1988

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

1987

C. Mariller, M. Lequime, “Fiber-Optic ‘White-Light’ Birefringent Temperature sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 121–130 (1987).

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

1986

G. Beheim, “Fibre-Optic Thermometer Using Semiconductor Etalon,” Electron. Lett. 22, 238–239 (1986).
[CrossRef]

1982

K. Peterman, G. Arnold “Noise and Distortion Characteristics of Semiconductor Lasers in Optical Fiber Communications Systems,” IEEE J. Quantum Electron. QE-18, 543–544 (1982).
[CrossRef]

1981

S. Saito, Y. Yamamoto, “Direct Observation of Lorentzian Line Shape of Semiconductor Laser and Linewidth Reduction with External Grating Feedback,” Electron. Lett. 17, 325–327 (1981).
[CrossRef]

1980

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16, 630–632 (1980).
[CrossRef]

Arnold, G.

K. Peterman, G. Arnold “Noise and Distortion Characteristics of Semiconductor Lasers in Optical Fiber Communications Systems,” IEEE J. Quantum Electron. QE-18, 543–544 (1982).
[CrossRef]

Beheim, G.

G. Beheim, “Fibre-Optic Thermometer Using Semiconductor Etalon,” Electron. Lett. 22, 238–239 (1986).
[CrossRef]

Farahi, F.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Jackson, D. A.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16, 630–632 (1980).
[CrossRef]

Lequime, M.

C. Mariller, M. Lequime, “Fiber-Optic ‘White-Light’ Birefringent Temperature sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 121–130 (1987).

Mariller, C.

C. Mariller, M. Lequime, “Fiber-Optic ‘White-Light’ Birefringent Temperature sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 121–130 (1987).

Nakayama, A.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16, 630–632 (1980).
[CrossRef]

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16, 630–632 (1980).
[CrossRef]

Peterman, K.

K. Peterman, G. Arnold “Noise and Distortion Characteristics of Semiconductor Lasers in Optical Fiber Communications Systems,” IEEE J. Quantum Electron. QE-18, 543–544 (1982).
[CrossRef]

Saito, S.

S. Saito, Y. Yamamoto, “Direct Observation of Lorentzian Line Shape of Semiconductor Laser and Linewidth Reduction with External Grating Feedback,” Electron. Lett. 17, 325–327 (1981).
[CrossRef]

Yamamoto, Y.

S. Saito, Y. Yamamoto, “Direct Observation of Lorentzian Line Shape of Semiconductor Laser and Linewidth Reduction with External Grating Feedback,” Electron. Lett. 17, 325–327 (1981).
[CrossRef]

Electron. Lett.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric Fibre-Optic Sensor Using a Short-Coherence-Length Source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

G. Beheim, “Fibre-Optic Thermometer Using Semiconductor Etalon,” Electron. Lett. 22, 238–239 (1986).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-Optic Interferometric Sensor Utilising Low Coherence Length Source—Resolution Enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

S. Saito, Y. Yamamoto, “Direct Observation of Lorentzian Line Shape of Semiconductor Laser and Linewidth Reduction with External Grating Feedback,” Electron. Lett. 17, 325–327 (1981).
[CrossRef]

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16, 630–632 (1980).
[CrossRef]

IEEE J. Quantum Electron.

K. Peterman, G. Arnold “Noise and Distortion Characteristics of Semiconductor Lasers in Optical Fiber Communications Systems,” IEEE J. Quantum Electron. QE-18, 543–544 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

C. Mariller, M. Lequime, “Fiber-Optic ‘White-Light’ Birefringent Temperature sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 121–130 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the Michelson interferometer.

Fig. 2
Fig. 2

Interference pattern recorded on the photodetector in the interferometer.

Fig. 3
Fig. 3

Intensity of signal representing the peaks of the Doppler-shifted interference fringes. (a) SONY diode—drive current 57 mA and 46 mA. (b) SHARP laser diode—drive current 65 mA, 60 mA, and 57 mA.

Fig. 4
Fig. 4

Intensity of zero-order interference region for SHARP laser diode operated at 65, 60, 55, and 50 mA drive current.

Fig. 5
Fig. 5

Intensity of signal representing zero- and first-order regions. (a) SONY diode—drive current 55 mA (b) SHARP diode—drive current 55 mA.

Fig. 6
Fig. 6

Theroretical spectrum of a laser diode, modeled in this work.

Fig. 7
Fig. 7

Calculated signal intensity of peaks of the Doppler-shifted interference fringes: (a) SONY laser diode δ′λ = 0.15 nm (b) SONY laser diode δ′λ = 0.05 nm.

Fig. 8
Fig. 8

Calculated intensity of signal representing zero- and first-order regions for SONY laser diode.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 Δ L [ 1 λ o 1 ( λ o + Δ λ ) ] = 1 ,
Δ L = 2 Δ L = λ o 2 / Δ λ .
S j ( σ ) = 2 δ σ / c ( δ σ ) 2 + 4 ( σ σ j ) 2 .
E = j = m + m + S j ( σ ) exp [ π ( j Δ σ δ σ ) + i ω t ] d σ ,
θ = 2 π ( 2 Δ L ) / λ = 2 π ( 2 Δ L ) σ = 2 π L σ ,
E j 1 = S j ( σ ) exp [ π ( j Δ σ δ σ ) 2 + i ω t ] E j 2 = S j ( σ ) exp [ π ( j Δ σ δ σ ) 2 + i ω t + 2 π σ L ] ,
d I j = ( E j 1 + E j 2 ) · ( E j 1 + E j 2 ) * = S j ( σ ) exp [ 2 π ( j Δ σ δ σ ) 2 ] [ 2 + 2 cos ( 2 π L σ ) ] d σ .
I j = + S j ( σ ) exp [ 2 π ( j Δ σ δ σ ) 2 ] [ 2 + 2 cos ( 2 π L σ ) ] d σ .
I j = 2 exp [ 2 π ( j Δ σ δ σ ) 2 ] · + S j ( σ ) cos ( 2 π L σ ) d σ = 2 exp [ 2 π ( j Δ σ δ σ ) 2 ] [ 1 / c 1 2 π exp ( δ σ 2 L ) ] · cos 2 π L σ j = 1 c 2 π exp [ 2 π ( j Δ σ δ σ ) 2 ] exp [ δ σ L / 2 ] · cos 2 π L σ j ,
+ [ 2 δ σ / π c ( δ σ ) 2 + 4 c ( σ σ j ) 2 ] · cos 2 π L σ d σ = 1 2 c 2 cos 2 π L σ j · exp ( 1 2 δ σ · L ) .
I = j = m + m I j = j = m + m exp [ 2 π ( j Δ σ δ σ ) 2 δ σ L / 2 ] · cos 2 π L σ j = exp ( δ σ L / 2 ) · j = m + m exp [ 2 π ( j Δ σ δ σ ) 2 ] cos 2 π L σ j .

Metrics