Abstract

A continuously tunable far-IR Raman laser has been used to measure the responsivity and the spectral response of uncoated LiTaO3 pyroelectric detectors between 230 and 530 μm. A striking feature of the spectral response curves is a periodic sequence of maxima and minima, with a modulation factor of ≥75%. Calculations based on the theory of an absorbing Fabry-Perot etalon indicate that these variations correspond to interference fringes produced by multiple reflections at the surfaces of the LiTaO3 crystal.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shaulov, M. Simhony, “Peak Voltage of the Pyroelectric Response to Short Infrared Laser Pulses,” Appl. Phys. Lett. 20, 6–7 (1972).
    [CrossRef]
  2. C. B. Roundy, R. L. Byer, “Subnanosecond Pyroelectric Detector,” Appl. Phys. Lett. 21, 512–515 (1972).
    [CrossRef]
  3. S. Lavi, M. Simhony, “Pyroelectric Response to Single Infrared Laser Pulses in Triglycine Sulphate and Strontium-barium Niobate,” J. Appl. Phys. 44, 5187–5189 (1973).
    [CrossRef]
  4. E. H. Putley, “The Pyroelectric Detector,” in Semiconductors and Semimetals; Vol. 5, Infrared Detectors, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1970), pp. 259–285.
    [CrossRef]
  5. P. W. Kruse, “The Photon Detection Process,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer Verlag, Berlin, 1977), pp. 5–69.
  6. J. R. Izatt, B. K. Deka, “Short Wavelength Operation of the CH3F Raman FIR Laser,” Int. J. Infrared Millimeter Waves 5, 1473–1482 (1984).
    [CrossRef]
  7. J. R. Izatt, B. K. Deka, Wen-sen Zhu, “Simultaneous Tunable Raman and Fixed Frequency Oscillation of a CH3F FIR Laser,” IEEE J. Quantum Electron. QE-23, 117–122 (1987).
    [CrossRef]
  8. P. Mathieu, J. R. Izatt, “Continuously Tunable CH3F Raman Far-Infrared Laser,” Opt. Lett. 6, 369–371 (1981).
    [CrossRef] [PubMed]
  9. L. N. Hadley, D. M. Dennison, “Reflection and Transmission Interference Filters,” J. Opt. Soc. Am. 37, 451–465 (1947).
    [CrossRef] [PubMed]
  10. K. P. Cheung, D. H. Auston, “A Novel Technique for Measuring Far-Infrared Absorption and Dispersion,” Infrared Phys. 26, 23–27 (1986).
    [CrossRef]
  11. A. S. Barker, A. A. Ballman, J. A. Ditzenberger, “Infrared Study of the Lattice Vibrations in LiTaO3,” Phys. Rev. B 2, 4233–4239 (1970).
    [CrossRef]
  12. M. N. Afsar, K. J. Button, “Millimeter Wave Dielectric Properties of Materials,” in Infrared and Millimeter Waves; Vol. 12, Electromagnetic Waves in Matter, K. J. Button, Ed. (Academic, New York, 1984), pp. 1–42.

1987 (1)

J. R. Izatt, B. K. Deka, Wen-sen Zhu, “Simultaneous Tunable Raman and Fixed Frequency Oscillation of a CH3F FIR Laser,” IEEE J. Quantum Electron. QE-23, 117–122 (1987).
[CrossRef]

1986 (1)

K. P. Cheung, D. H. Auston, “A Novel Technique for Measuring Far-Infrared Absorption and Dispersion,” Infrared Phys. 26, 23–27 (1986).
[CrossRef]

1984 (1)

J. R. Izatt, B. K. Deka, “Short Wavelength Operation of the CH3F Raman FIR Laser,” Int. J. Infrared Millimeter Waves 5, 1473–1482 (1984).
[CrossRef]

1981 (1)

1973 (1)

S. Lavi, M. Simhony, “Pyroelectric Response to Single Infrared Laser Pulses in Triglycine Sulphate and Strontium-barium Niobate,” J. Appl. Phys. 44, 5187–5189 (1973).
[CrossRef]

1972 (2)

A. Shaulov, M. Simhony, “Peak Voltage of the Pyroelectric Response to Short Infrared Laser Pulses,” Appl. Phys. Lett. 20, 6–7 (1972).
[CrossRef]

C. B. Roundy, R. L. Byer, “Subnanosecond Pyroelectric Detector,” Appl. Phys. Lett. 21, 512–515 (1972).
[CrossRef]

1970 (1)

A. S. Barker, A. A. Ballman, J. A. Ditzenberger, “Infrared Study of the Lattice Vibrations in LiTaO3,” Phys. Rev. B 2, 4233–4239 (1970).
[CrossRef]

1947 (1)

Afsar, M. N.

M. N. Afsar, K. J. Button, “Millimeter Wave Dielectric Properties of Materials,” in Infrared and Millimeter Waves; Vol. 12, Electromagnetic Waves in Matter, K. J. Button, Ed. (Academic, New York, 1984), pp. 1–42.

Auston, D. H.

K. P. Cheung, D. H. Auston, “A Novel Technique for Measuring Far-Infrared Absorption and Dispersion,” Infrared Phys. 26, 23–27 (1986).
[CrossRef]

Ballman, A. A.

A. S. Barker, A. A. Ballman, J. A. Ditzenberger, “Infrared Study of the Lattice Vibrations in LiTaO3,” Phys. Rev. B 2, 4233–4239 (1970).
[CrossRef]

Barker, A. S.

A. S. Barker, A. A. Ballman, J. A. Ditzenberger, “Infrared Study of the Lattice Vibrations in LiTaO3,” Phys. Rev. B 2, 4233–4239 (1970).
[CrossRef]

Button, K. J.

M. N. Afsar, K. J. Button, “Millimeter Wave Dielectric Properties of Materials,” in Infrared and Millimeter Waves; Vol. 12, Electromagnetic Waves in Matter, K. J. Button, Ed. (Academic, New York, 1984), pp. 1–42.

Byer, R. L.

C. B. Roundy, R. L. Byer, “Subnanosecond Pyroelectric Detector,” Appl. Phys. Lett. 21, 512–515 (1972).
[CrossRef]

Cheung, K. P.

K. P. Cheung, D. H. Auston, “A Novel Technique for Measuring Far-Infrared Absorption and Dispersion,” Infrared Phys. 26, 23–27 (1986).
[CrossRef]

Deka, B. K.

J. R. Izatt, B. K. Deka, Wen-sen Zhu, “Simultaneous Tunable Raman and Fixed Frequency Oscillation of a CH3F FIR Laser,” IEEE J. Quantum Electron. QE-23, 117–122 (1987).
[CrossRef]

J. R. Izatt, B. K. Deka, “Short Wavelength Operation of the CH3F Raman FIR Laser,” Int. J. Infrared Millimeter Waves 5, 1473–1482 (1984).
[CrossRef]

Dennison, D. M.

Ditzenberger, J. A.

A. S. Barker, A. A. Ballman, J. A. Ditzenberger, “Infrared Study of the Lattice Vibrations in LiTaO3,” Phys. Rev. B 2, 4233–4239 (1970).
[CrossRef]

Hadley, L. N.

Izatt, J. R.

J. R. Izatt, B. K. Deka, Wen-sen Zhu, “Simultaneous Tunable Raman and Fixed Frequency Oscillation of a CH3F FIR Laser,” IEEE J. Quantum Electron. QE-23, 117–122 (1987).
[CrossRef]

J. R. Izatt, B. K. Deka, “Short Wavelength Operation of the CH3F Raman FIR Laser,” Int. J. Infrared Millimeter Waves 5, 1473–1482 (1984).
[CrossRef]

P. Mathieu, J. R. Izatt, “Continuously Tunable CH3F Raman Far-Infrared Laser,” Opt. Lett. 6, 369–371 (1981).
[CrossRef] [PubMed]

Kruse, P. W.

P. W. Kruse, “The Photon Detection Process,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer Verlag, Berlin, 1977), pp. 5–69.

Lavi, S.

S. Lavi, M. Simhony, “Pyroelectric Response to Single Infrared Laser Pulses in Triglycine Sulphate and Strontium-barium Niobate,” J. Appl. Phys. 44, 5187–5189 (1973).
[CrossRef]

Mathieu, P.

Putley, E. H.

E. H. Putley, “The Pyroelectric Detector,” in Semiconductors and Semimetals; Vol. 5, Infrared Detectors, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1970), pp. 259–285.
[CrossRef]

Roundy, C. B.

C. B. Roundy, R. L. Byer, “Subnanosecond Pyroelectric Detector,” Appl. Phys. Lett. 21, 512–515 (1972).
[CrossRef]

Shaulov, A.

A. Shaulov, M. Simhony, “Peak Voltage of the Pyroelectric Response to Short Infrared Laser Pulses,” Appl. Phys. Lett. 20, 6–7 (1972).
[CrossRef]

Simhony, M.

S. Lavi, M. Simhony, “Pyroelectric Response to Single Infrared Laser Pulses in Triglycine Sulphate and Strontium-barium Niobate,” J. Appl. Phys. 44, 5187–5189 (1973).
[CrossRef]

A. Shaulov, M. Simhony, “Peak Voltage of the Pyroelectric Response to Short Infrared Laser Pulses,” Appl. Phys. Lett. 20, 6–7 (1972).
[CrossRef]

Zhu, Wen-sen

J. R. Izatt, B. K. Deka, Wen-sen Zhu, “Simultaneous Tunable Raman and Fixed Frequency Oscillation of a CH3F FIR Laser,” IEEE J. Quantum Electron. QE-23, 117–122 (1987).
[CrossRef]

Appl. Phys. Lett. (2)

A. Shaulov, M. Simhony, “Peak Voltage of the Pyroelectric Response to Short Infrared Laser Pulses,” Appl. Phys. Lett. 20, 6–7 (1972).
[CrossRef]

C. B. Roundy, R. L. Byer, “Subnanosecond Pyroelectric Detector,” Appl. Phys. Lett. 21, 512–515 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Izatt, B. K. Deka, Wen-sen Zhu, “Simultaneous Tunable Raman and Fixed Frequency Oscillation of a CH3F FIR Laser,” IEEE J. Quantum Electron. QE-23, 117–122 (1987).
[CrossRef]

Infrared Phys. (1)

K. P. Cheung, D. H. Auston, “A Novel Technique for Measuring Far-Infrared Absorption and Dispersion,” Infrared Phys. 26, 23–27 (1986).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

J. R. Izatt, B. K. Deka, “Short Wavelength Operation of the CH3F Raman FIR Laser,” Int. J. Infrared Millimeter Waves 5, 1473–1482 (1984).
[CrossRef]

J. Appl. Phys. (1)

S. Lavi, M. Simhony, “Pyroelectric Response to Single Infrared Laser Pulses in Triglycine Sulphate and Strontium-barium Niobate,” J. Appl. Phys. 44, 5187–5189 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. B (1)

A. S. Barker, A. A. Ballman, J. A. Ditzenberger, “Infrared Study of the Lattice Vibrations in LiTaO3,” Phys. Rev. B 2, 4233–4239 (1970).
[CrossRef]

Other (3)

M. N. Afsar, K. J. Button, “Millimeter Wave Dielectric Properties of Materials,” in Infrared and Millimeter Waves; Vol. 12, Electromagnetic Waves in Matter, K. J. Button, Ed. (Academic, New York, 1984), pp. 1–42.

E. H. Putley, “The Pyroelectric Detector,” in Semiconductors and Semimetals; Vol. 5, Infrared Detectors, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1970), pp. 259–285.
[CrossRef]

P. W. Kruse, “The Photon Detection Process,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer Verlag, Berlin, 1977), pp. 5–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup. IS is an integrating sphere which feeds spectrally equivalent signals to detectors D1 and D2.

Fig. 2
Fig. 2

Scans of the CH3F Raman laser spectrum recorded with Golay cells G1 and G2. To facilitate comparison, the G2 spectrum is inverted. Here, and also in Figs. 3 and 5, S is the detector signal strength in arbitrary units.

Fig. 3
Fig. 3

Scans of the CH3F Raman laser spectrum recorded with two nominally identical pyroelectric detectors P1 and P2. Again, the second spectrum is inverted.

Fig. 4
Fig. 4

Detector response measurements at 285 μm for Golay cell G2 and pyroelectric detector P2.

Fig. 5
Fig. 5

Pyroelectric detector spectral response normalized to the spectrum measured with Golay cell G2. A, measured with P1. B, measured with P2. Error bars are shown in the upper left.

Fig. 6
Fig. 6

Absorbing dielectric layer with complex index of refraction ñ2 = η + iκ sandwiched between infinite nonabsorbing media with real refractive indices n1 and n3. The Өi define the direction of propagation in each of the three media.

Fig. 7
Fig. 7

Comparison of calculations spanning the range of expected values for the optical parameters in media 2 and 3 with the experimental data for detector P2. n1 is taken as 1. n2 is given as a function of frequency by Eqs. 4 and 5. For curve a, n3 = 2 and Γ = 84 cm−1. Curve b: n3 = 3 and Γ = 84 cm−1. Curve c: n3 = 2 and Γ = 38 cm−1. Curve d: n3 = 3 and Γ = 38 cm−1. The experimental data points were measured with detector P2.

Fig. 8
Fig. 8

Incidence angle dependence of the absorption curves for Γ = 38 cm−1 and n3 = 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A S = [ 8 a 2 p q cosh γ + 4 a p ( ρ q 2 + 1 ) sinh γ + 8 b 2 p q cos δ + 4 b p ( ρ q 2 1 ) sin δ 8 ρ p q ] / D S .
D S = [ ( ρ p 2 + 1 ) ( ρ q 2 + 1 ) + 4 a 2 p q ] cosh γ + [ 2 a q ( ρ p 2 + 1 ) + 2 a p ( ρ q 2 + 1 ) ] sinh γ, [ ( ρ p 2 1 ) ( ρ q 2 1 ) 4 b 2 p q ] cos δ + [ 2 b q ( ρ p 2 1 ) + 2 b p ( ρ q 2 1 ) ] sin δ , n ˜ 2 = η + i κ a = 1 2 { [ ( η 2 κ 2 sin 2 θ 1 ) 2 + 4 η 2 κ 2 ] 1 / 2 + ( η 2 κ 2 sin 2 θ 1 ) } 1 / 2 , b = 1 2 { [ ( η 2 κ 2 sin 2 θ 1 ) 2 + 4 η 2 κ 2 ] 1 / 2 ( η 2 κ 2 sin 2 θ 1 ) } 1 / 2 , p = ( n 1 2 sin 2 θ 1 ) 1 / 2 , q = ( n 3 2 sin 2 θ 1 ) 1 / 2 , ρ = a 2 + b 2 , γ = 4 π b s / λ , δ = 4 π a s / λ .
A = ( A s + A p ) / 2 .
η 2 = + ( 0 ) ω 0 2 ω 0 2 ω 2 ,
κ = ( 0 ) Γ ω 2 0 ω 0 2 .

Metrics