Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Depolarization of polarized light caused by high altitude clouds. 1: Depolarization of lidar induced by cirrus

Not Accessible

Your library or personal account may give you access

Abstract

A scattering model is described for the investigation of depolarization of polarized light caused by ice clouds. The scattering by a single particle is described by refraction, reflection, and diffraction. The ice cloud is assumed to be a random mixture of hexagonal columns and plates of random orientation and size. Multiple scattering effects are included by means of a Monte Carlo method, where single photon histories are constructed from random samples of the distributions governing the basic scattering parameters. The dependence of depolarization on cloud extinction coefficient, receiver field of view, and mixing ratio of columns to plates are studied. Lidar measurements of depolarization by a high altitude cirrus cloud are presented and discussed within the frame of the present model. Good agreement can be obtained assuming a variation of crystal shape distribution with height.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Lidar ratio and depolarization ratio for cirrus clouds

Wei-Nai Chen, Chih-Wei Chiang, and Jan-Bai Nee
Appl. Opt. 41(30) 6470-6476 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.