Abstract

This paper presents an evaluation of the random and systematic error sources associated with differential absorption lidar (DIAL) measurements of tropospheric water vapor (H2O) profiles from airborne and spaceborne platforms. The results of this analysis are used in the development and performance evaluation of the Lidar Atmospheric Sensing Experiment (LASE) H2O DIAL system presently under development at the NASA Langley Research Center for operation on a high altitude ER–2 (advanced U–2) aircraft. The analysis shows that a <10% H2O profile measurement accuracy is possible for the LASE system with a vertical and horizontal resolution of 200 m and 10 km, respectively, at night and 300 m and 20 km during the day. Global measurements of H2O profiles from spaceborne DIAL systems can be made to a similar accuracy with a vertical resolution of 500 m and a horizontal resolution of 100 km.

© 1989 Optical Society of America

Full Article  |  PDF Article

Corrections

Syed Ismail and Edward V. Browell, "Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis; erratum," Appl. Opt. 28, 4981-4981 (1989)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-28-23-4981

References

  • View by:
  • |
  • |
  • |

  1. C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhrke, Eds. (Academic, New York, 1980).
  2. S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).
  3. R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  4. R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, New York, 1976), p. 117–151.
  5. R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of Environment, 12–24 Apr. 1966 (U. Michigan, Ann Arbor, 1966).
  6. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  7. C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
    [CrossRef]
  8. E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds., (Springer-Verlag, New York, 1983), pp. 138–147.
  9. E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).
  10. V. E. Zuev, Yu S. Makushkin, V. N. Marichev, A. A. Mitsel, V. V. Zuev, “Lidar Differential Absorption and Scattering Technique,” Appl. Opt. 22, 3733–3741 (1983).
    [CrossRef] [PubMed]
  11. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  12. J. Bosenberg, “A DIAL System for High Resolution Water Vapor Measurements in the Troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, OSA Tech. Digest Series, 18, 22–25 (1987).
  13. E. V. Browell et al., “Development of a High-Altitude H2O Airborne DIAL System—The Lidar Atmospheric Sensing Experiment (LASE),” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, 11–15 Aug. (1986).
  14. E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” in Proceedings, ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland, ESA SP-202, 181–188, May (1984).
  15. M. Endemann et al., “Orbiting Lidars for Atmospheric Sounding,” Final Report, Vol. I, Battelle-Institut E. V., Frankfurt, FRG (Dec.1984).
  16. E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).
  17. “NASA, Lidar Atmospheric Sounder and Altimeter,” EOS Report, Vol. 2 (1987).
  18. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo Computer Simulations of Ground-based and Space-based Coherent DIAL Water Vapor Profiling,” Appl. Opt. 28, 840–851 (1989).
    [CrossRef] [PubMed]
  19. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  20. E. V. Browell, P. Woods, First Int. DIAL Workshop Report, Virginia Beach, VA, Nov. 1985, NASA Ref. Pub. (1989).
  21. R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).
  22. E. E. Remsberg, L. L. Gordley, “Analysis of Differential Absorption Lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  23. R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Air Force Cambridge Research Laboratory, Rep. No. TR-0096Jan. (1973).
  24. W. S. Benedict, L. D. Kaplan, “Calculation of Line Widths in H2O–N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).
  25. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
    [CrossRef]
  26. S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
    [CrossRef]
  27. McClatchey et al., “Optical Properties of the Atmosphere,” Air Force Geophys. Lab., Hanscom AFB, AFCRL-72-0497 (1972).
  28. M. P. Thekaekara, “Extraterrestrial Solar Spectrum, 3000–6100A at 1-A Intervals,” Appl. Opt. 13, 518–522 (1974).
    [CrossRef] [PubMed]
  29. P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).
  30. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).
  31. M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).
  32. R. L. Kenimer, “Predictions of Silicon Avalanche Photodiode Performance in Water Vapor Differential Absorption Lidar,” Proc. Soc. Photo. Opt. Instrum. Eng. 889, 126–135 (1988).
  33. M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Backscatter,” Appl. Opt. 26, 2598–2603 (1987).
    [CrossRef] [PubMed]
  34. W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential Absorption Lidar Signal Averaging,” Appl. Opt. 27, 1934–1938 (1988).
    [CrossRef] [PubMed]
  35. L.S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  36. C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
    [CrossRef]
  37. C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” Abstracts, Eleventh International Laser Radar Conference, Madison, WI, (1982).
  38. G. Fiocco, J. B. Dewolf, “Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air,” J. Atmos. Sci. 25, 488–496 (1968).
    [CrossRef]
  39. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).
  40. S. T. Shipley et al., “High Spectral Resolution Lidar to Measure Optical Scattering Properties of Atmospheric Aerosols. 1: Theory and Instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  41. S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).
  42. A. Ansmann, “Errors in Ground Based Water-Vapor DIAL Measurements Due to Doppler-Broadened Rayleigh Backscattering,” Appl. Opt. 24, 3476–3480 (1985).
    [CrossRef] [PubMed]
  43. S. Ismail, E. V. Browell, “Influence of Rayleigh-Doppler Broadening on the Selection of H2O DIAL System Parameters,” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, Aug. 11–15 (1986).
  44. A. Ansmann, J. Bosenberg, “Correction Scheme for Spectral Broadening by Rayleigh Scattering in Differential Absorption Lidar Measurements of Water Vapor in the Troposphere,” Appl. Opt. 26, 3026–3032 (1987).
    [CrossRef] [PubMed]
  45. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).
  46. A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
    [CrossRef]
  47. H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236.
    [CrossRef]
  48. J. Bosenberg, “Measurements of the Pressure Shift of Water Vapor Absorption Lines by Simultaneous Photoacoustic Spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
    [CrossRef] [PubMed]
  49. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
    [CrossRef]
  50. V. V. Zuev, Yu. N. Ponomarev, A. M. Solodov, B. A. Tikhomirov, O. A. Romanovsky, “Influence of the Shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by the Differential-Absorption Method,” Opt. Lett. 10, 318–320 (1985).
    [CrossRef] [PubMed]
  51. E. V. Browell, S. Ismail, B. Grossmann, “Temperature Sensitivity of Absorption Lines for H2O DIAL Measurements,” Manuscript in Preparation (1989).
  52. C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).
  53. G. K. Schwemmer et al., “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. Sci. Instrum. 58, 2226–2237, (1987).
    [CrossRef]
  54. B. Grossmann, E. V. Browell, Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 20–25 June (1988).

1989 (1)

1988 (2)

R. L. Kenimer, “Predictions of Silicon Avalanche Photodiode Performance in Water Vapor Differential Absorption Lidar,” Proc. Soc. Photo. Opt. Instrum. Eng. 889, 126–135 (1988).

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential Absorption Lidar Signal Averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

1987 (6)

1986 (1)

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

1985 (4)

1983 (2)

1982 (1)

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

1981 (1)

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

1979 (2)

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

1978 (1)

1976 (2)

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

1974 (3)

M. P. Thekaekara, “Extraterrestrial Solar Spectrum, 3000–6100A at 1-A Intervals,” Appl. Opt. 13, 518–522 (1974).
[CrossRef] [PubMed]

P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

1971 (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).

1968 (1)

G. Fiocco, J. B. Dewolf, “Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

1959 (1)

W. S. Benedict, L. D. Kaplan, “Calculation of Line Widths in H2O–N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

Ansmann, A.

Benard, J.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

Benedetti-Michelangeli, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).

Benedict, W. S.

W. S. Benedict, L. D. Kaplan, “Calculation of Line Widths in H2O–N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

Bogan, J. R.

Bosenberg, J.

Bowker, D. E.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).

Brothers, A. M.

Browell, E. V.

E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

B. Grossmann, E. V. Browell, Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 20–25 June (1988).

S. Ismail, E. V. Browell, “Influence of Rayleigh-Doppler Broadening on the Selection of H2O DIAL System Parameters,” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, Aug. 11–15 (1986).

E. V. Browell, S. Ismail, B. Grossmann, “Temperature Sensitivity of Absorption Lines for H2O DIAL Measurements,” Manuscript in Preparation (1989).

E. V. Browell et al., “Development of a High-Altitude H2O Airborne DIAL System—The Lidar Atmospheric Sensing Experiment (LASE),” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” in Proceedings, ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland, ESA SP-202, 181–188, May (1984).

E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).

E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds., (Springer-Verlag, New York, 1983), pp. 138–147.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).

E. V. Browell, P. Woods, First Int. DIAL Workshop Report, Virginia Beach, VA, Nov. 1985, NASA Ref. Pub. (1989).

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).

Cahen, C.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

Camy-Peyret, C.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Chevillard, J.-P.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Chu, B.

A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, New York, 1976), p. 117–151.

Conradi, J.

P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).

Dalu, G.

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhrke, Eds. (Academic, New York, 1980).

Davis, R. E.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).

Dewolf, J. B.

G. Fiocco, J. B. Dewolf, “Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Drayson, S. R.

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

Endemann, M.

M. Endemann et al., “Orbiting Lidars for Atmospheric Sounding,” Final Report, Vol. I, Battelle-Institut E. V., Frankfurt, FRG (Dec.1984).

Falcone, V.

S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).

Ferrare, R.

S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).

Fiocco, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).

G. Fiocco, J. B. Dewolf, “Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Flamant, P.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).

Flaud, J.-M.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Frehlich, R. G.

Gasiorek, L. S.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).

Gentry, B.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Giver, L. P.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Gordley, L. L.

Goroch, A. K.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).

Grams, G. W.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).

Grant, W. B.

Grew, G.

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).

Grossmann, B.

E. V. Browell, S. Ismail, B. Grossmann, “Temperature Sensitivity of Absorption Lines for H2O DIAL Measurements,” Manuscript in Preparation (1989).

B. Grossmann, E. V. Browell, Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 20–25 June (1988).

Henderson, S. W.

Huffaker, R. M.

Inaba, H.

H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236.
[CrossRef]

Ismail, S.

E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, B. Grossmann, “Temperature Sensitivity of Absorption Lines for H2O DIAL Measurements,” Manuscript in Preparation (1989).

S. Ismail, E. V. Browell, “Influence of Rayleigh-Doppler Broadening on the Selection of H2O DIAL System Parameters,” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, Aug. 11–15 (1986).

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).

E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).

E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” in Proceedings, ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland, ESA SP-202, 181–188, May (1984).

Jones, W. T.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).

Kaplan, L. D.

W. S. Benedict, L. D. Kaplan, “Calculation of Line Widths in H2O–N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

Kavaya, M. J.

Kenimer, R. L.

R. L. Kenimer, “Predictions of Silicon Avalanche Photodiode Performance in Water Vapor Differential Absorption Lidar,” Proc. Soc. Photo. Opt. Instrum. Eng. 889, 126–135 (1988).

Korb, C. L.

C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” Abstracts, Eleventh International Laser Radar Conference, Madison, WI, (1982).

Lao, A. H.

A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Lesne, J. L.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

Liston, E. M.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).

Livingston, J. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).

Madonna, E.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).

Maischberger, K.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).

Makushkin, Yu S.

Mandin, J.-Y.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

Margolis, J. S.

Marichev, V. N.

Markson, R.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).

McClatchey,

McClatchey et al., “Optical Properties of the Atmosphere,” Air Force Geophys. Lab., Hanscom AFB, AFCRL-72-0497 (1972).

McClatchey, R. A.

R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Air Force Cambridge Research Laboratory, Rep. No. TR-0096Jan. (1973).

McCormick, M. P.

E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).

McIlrath, T. J.

Mclntyer, R. J.

P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).

Megie, G.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).

Melfi, S. H.

S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).

Milton, M. J. T.

Mitsel, A. A.

Morley, B. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).

Myrick, D. L.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).

Patterson, M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).

Ponomarev, Yu. N.

Ponsardin, P.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

Prabhakara, C.

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhrke, Eds. (Academic, New York, 1980).

Proctor, E. K.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).

Remsberg, E. E.

Romanovsky, O. A.

Rothman, L.S.

Russell, E. C.

Russell, P. B.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, New York, 1976), p. 117–151.

Schoen, P. E.

A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of Environment, 12–24 Apr. 1966 (U. Michigan, Ann Arbor, 1966).

Schwemmer, G.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Schwemmer, G. K.

G. K. Schwemmer et al., “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. Sci. Instrum. 58, 2226–2237, (1987).
[CrossRef]

Shipley, S. T.

Solodov, A. M.

Stacy, K.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).

Swissler, T. J.

E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).

Thekaekara, M. P.

Thompson, R. T.

R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).

Tikhomirov, B. A.

Tratt, D. M.

Webb, P. P.

P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).

Weng, C. Y.

C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” Abstracts, Eleventh International Laser Radar Conference, Madison, WI, (1982).

Whiteman, D.

S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).

Wilkerson, T. D.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).

Woods, P.

E. V. Browell, P. Woods, First Int. DIAL Workshop Report, Virginia Beach, VA, Nov. 1985, NASA Ref. Pub. (1989).

Woods, P. T.

Wright, M. L.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).

Zuev, V. E.

Zuev, V. V.

Appl. Opt. (14)

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

V. E. Zuev, Yu S. Makushkin, V. N. Marichev, A. A. Mitsel, V. V. Zuev, “Lidar Differential Absorption and Scattering Technique,” Appl. Opt. 22, 3733–3741 (1983).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo Computer Simulations of Ground-based and Space-based Coherent DIAL Water Vapor Profiling,” Appl. Opt. 28, 840–851 (1989).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

M. P. Thekaekara, “Extraterrestrial Solar Spectrum, 3000–6100A at 1-A Intervals,” Appl. Opt. 13, 518–522 (1974).
[CrossRef] [PubMed]

M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Backscatter,” Appl. Opt. 26, 2598–2603 (1987).
[CrossRef] [PubMed]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential Absorption Lidar Signal Averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

L.S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

E. E. Remsberg, L. L. Gordley, “Analysis of Differential Absorption Lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

S. T. Shipley et al., “High Spectral Resolution Lidar to Measure Optical Scattering Properties of Atmospheric Aerosols. 1: Theory and Instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

A. Ansmann, “Errors in Ground Based Water-Vapor DIAL Measurements Due to Doppler-Broadened Rayleigh Backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

A. Ansmann, J. Bosenberg, “Correction Scheme for Spectral Broadening by Rayleigh Scattering in Differential Absorption Lidar Measurements of Water Vapor in the Troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

J. Bosenberg, “Measurements of the Pressure Shift of Water Vapor Absorption Lines by Simultaneous Photoacoustic Spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
[CrossRef] [PubMed]

J. Appl. Meteorol. (2)

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. Atmos. Sci. (1)

G. Fiocco, J. B. Dewolf, “Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

J. Chem. Phys. (2)

A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

W. S. Benedict, L. D. Kaplan, “Calculation of Line Widths in H2O–N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).

J. Mol. Spectrosc. (1)

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Laser and Optical Remote Sensing: Instrumentation and Techniques (1)

J. Bosenberg, “A DIAL System for High Resolution Water Vapor Measurements in the Troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, OSA Tech. Digest Series, 18, 22–25 (1987).

Nature (London), Phys. Sci., Lett. (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).

Opt. Lett. (1)

Proc. Soc. Photo. Opt. Instrum. Eng. (1)

R. L. Kenimer, “Predictions of Silicon Avalanche Photodiode Performance in Water Vapor Differential Absorption Lidar,” Proc. Soc. Photo. Opt. Instrum. Eng. 889, 126–135 (1988).

RCA Review (1)

P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).

Rev. Sci. Instrum. (1)

G. K. Schwemmer et al., “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. Sci. Instrum. 58, 2226–2237, (1987).
[CrossRef]

Other (25)

B. Grossmann, E. V. Browell, Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 20–25 June (1988).

E. V. Browell, S. Ismail, B. Grossmann, “Temperature Sensitivity of Absorption Lines for H2O DIAL Measurements,” Manuscript in Preparation (1989).

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236.
[CrossRef]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).

R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Air Force Cambridge Research Laboratory, Rep. No. TR-0096Jan. (1973).

S. Ismail, E. V. Browell, “Influence of Rayleigh-Doppler Broadening on the Selection of H2O DIAL System Parameters,” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, Aug. 11–15 (1986).

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).

C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” Abstracts, Eleventh International Laser Radar Conference, Madison, WI, (1982).

McClatchey et al., “Optical Properties of the Atmosphere,” Air Force Geophys. Lab., Hanscom AFB, AFCRL-72-0497 (1972).

E. V. Browell, P. Woods, First Int. DIAL Workshop Report, Virginia Beach, VA, Nov. 1985, NASA Ref. Pub. (1989).

R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).

E. V. Browell et al., “Development of a High-Altitude H2O Airborne DIAL System—The Lidar Atmospheric Sensing Experiment (LASE),” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, 11–15 Aug. (1986).

E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” in Proceedings, ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland, ESA SP-202, 181–188, May (1984).

M. Endemann et al., “Orbiting Lidars for Atmospheric Sounding,” Final Report, Vol. I, Battelle-Institut E. V., Frankfurt, FRG (Dec.1984).

E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).

“NASA, Lidar Atmospheric Sounder and Altimeter,” EOS Report, Vol. 2 (1987).

R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, New York, 1976), p. 117–151.

R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of Environment, 12–24 Apr. 1966 (U. Michigan, Ann Arbor, 1966).

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhrke, Eds. (Academic, New York, 1980).

S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).

E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds., (Springer-Verlag, New York, 1983), pp. 138–147.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Assumed three layer aerosol model representing background aerosol conditions with a ground visibility of 23 km. A constant phase function19 value of 0.023 sr−1 is assumed.

Fig. 2
Fig. 2

Lidar signals, detector dark current, and background signal levels for the LASE system operating from an aircraft altitude of 16 km for ground surface reflectivity values of 0.8, 0.3, and 0.03.

Fig. 3
Fig. 3

Random error profiles for the LASE H2O DIAL system operating with night background conditions. A midlatitude summer H2O profile27 is assumed.

Fig. 4
Fig. 4

Random error profiles for the LASE H2O DIAL system operating over various daytime background conditions.

Fig. 5
Fig. 5

Random error profiles for a spaceborne H2O DIAL system at an altitude of 700 km. A summer H2O model is assumed.

Fig. 6
Fig. 6

Influence of laser spectral width causing systematic errors due to the distortion of the laser profile. An H2O cross section of 70.1 × 10−24 cm2 is assumed.

Fig. 7
Fig. 7

Comparison of the altitude dependence of the H2O absorption linewidth and the Doppler-broadened Rayleigh backscattered linewidth.

Fig. 8
Fig. 8

Systematic error due to Doppler broadening of molecular backscatter in the atmosphere. Also shown is the reduced error profile when Doppler broadening effect is estimated.

Fig. 9
Fig. 9

Systematic errors caused by tuning the laser to H2O line center at an altitude of 0, 4, and 20 km. A pressure shift of 1.0 pm/atm is assumed.

Fig. 10
Fig. 10

Influence of spectral purity (caused by ASE) on H2O DIAL measurements.

Fig. 11
Fig. 11

H2O DIAL measurement error caused by an uncertainty in the knowledge of laser spectral position (a) no detuning error (b) 0.25 pm detuning error and (c) 0.5 pm detuning error.

Fig. 12
Fig. 12

DIAL systematic error caused by spreading of the laser spectrum by the wavemeter optical resolution.

Fig. 13
Fig. 13

Combined errors from random and systematic effects in the LASE H2O DIAL system for two absorption lines. Total DIAL measurement errors are shown for two levels of spectral purity.

Tables (2)

Tables Icon

Table I LASE H2O DIAL Parameters

Tables Icon

Table II Parameters of a Spaceborne Water Vapor DIAL System

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

n = 1 2 Δ σ ( R 2 R 1 ) ln [ S on ( R 1 ) S off ( R 2 ) S on ( R 2 ) S off ( R 1 ) ] ,
γ = γ 0 P P 0 ( T 0 T ) 0 . 62 ,
S = S 0 ( T 0 T ) 1 . 5 exp [ E h c k ( 1 T 0 1 T ) ] ,
γ D = v 0 c ( 2 k T ln 2 / m ) 1 / 2 ,
σ ( v ) = σ 0 y π exp ( t 2 ) y 2 + ( x t ) 2 d t ,
σ 0 = S γ D ( ln 2 π ) 1 / 2 ; y = γ γ D ( ln 2 ) 1 / 2 ; x = v v 0 γ D ( ln 2 ) 1 / 2 .
S ( R ) = ( E / h v ) A η β Q c Δ t 2 R 2 exp 2 0 R α d R
B = L h v · ρ π · π ( θ 2 ) 2 A w Q η Δ t exp ( 2 τ ) ,
D = ( NEP 2 η λ hc ) 2 Δ t ,
Δ n n = 1 2 Δ σ n ( R 2 R 1 ) { i = 1 2 j = 1 2 [ ( S i j + B ) F + D S i j 2 ] } 1 / 2 ,
Δ n n ( Δ x ) 0 . 5 ( Δ R ) 1 . 5 ,
σ eff ( z ) = G ( v , z ) σ υ ( v , z ) d υ G ( v , z ) d υ ,
f ( υ ) = ( m 2 π k T ) 1 / 2 exp ( m υ 2 2 k T ) ,
λ λ o λ o = 2 υ c ,
F ( λ ) = A exp ( m c 2 8 k T ) ( λ λ 0 λ ) 2 ,
γ = 2 λ c 2 k T ln 2 m .
T N = E h c 0 . 88 k ,
T N = E h c 1 . 88 k ,
S on = S off [ ( 1 α ) + α e 2 τ ] ,

Metrics