Abstract

A CO2 laser has been FM chirp modulated by a CdTe intracavity modulator. A frequency deviation-of-100 MHz in 2 μs was attained in this fashion. Following heterodyne detection the chirped pulse was compressed to 15 ns using a surface acoustic wave compression filter. This corresponded to a compression factor of 130. The suppression of unwanted sidelobes with a weighting filter was demonstrated. We have explored the use of this technique for laser radar systems and described an electrooptically FM modulated CO2 waveguide laser with postdetection pulse compression by a surface acoustic wave compressive filter. To our knowledge this is the first report of the successful operation of this important system.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Cooke, “Laser Radar Systems, Some Examples,” Proc. Soc. Photo-Opt. Instrum. Eng. 128,103–107 (1977).
  2. P. A. Forrester, K. F. Hulme, “Review Laser Rangefinders,” Opt. Quantum Electron. Vol. B, 259–293 (1981).
    [CrossRef]
  3. P. M. Woodward, Probability and Information Theory, with Applications to Radar (Pergamon, Oxford, 1953).
  4. C. E. Cook, M. Bernfeld, Radar Signals an Introduction to Theory and Applications (Academic, New York, 1967).
  5. K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
    [CrossRef]
  6. J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, “Intracavity CdTe Modulators for CO2 Lasers,” IEEE J. Quantum Electron. QE-8, 171–179 (1972).
  7. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  8. A. VanLerberghe, S. Avrillier, C. J. Borde, “High Stability CW Waveguide CO2 Laser for High Resolution Saturation Spectroscopy,” IEEE J. Quantum Electron. QE-14, 481–486 (1978).
    [CrossRef]
  9. J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

1981 (2)

P. A. Forrester, K. F. Hulme, “Review Laser Rangefinders,” Opt. Quantum Electron. Vol. B, 259–293 (1981).
[CrossRef]

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
[CrossRef]

1978 (1)

A. VanLerberghe, S. Avrillier, C. J. Borde, “High Stability CW Waveguide CO2 Laser for High Resolution Saturation Spectroscopy,” IEEE J. Quantum Electron. QE-14, 481–486 (1978).
[CrossRef]

1977 (1)

C. R. Cooke, “Laser Radar Systems, Some Examples,” Proc. Soc. Photo-Opt. Instrum. Eng. 128,103–107 (1977).

1972 (1)

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, “Intracavity CdTe Modulators for CO2 Lasers,” IEEE J. Quantum Electron. QE-8, 171–179 (1972).

1960 (1)

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

Albersheim, W. J.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

Avrillier, S.

A. VanLerberghe, S. Avrillier, C. J. Borde, “High Stability CW Waveguide CO2 Laser for High Resolution Saturation Spectroscopy,” IEEE J. Quantum Electron. QE-14, 481–486 (1978).
[CrossRef]

Bernfeld, M.

C. E. Cook, M. Bernfeld, Radar Signals an Introduction to Theory and Applications (Academic, New York, 1967).

Borde, C. J.

A. VanLerberghe, S. Avrillier, C. J. Borde, “High Stability CW Waveguide CO2 Laser for High Resolution Saturation Spectroscopy,” IEEE J. Quantum Electron. QE-14, 481–486 (1978).
[CrossRef]

Collins, B. S.

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
[CrossRef]

Constant, G. D.

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
[CrossRef]

Cook, C. E.

C. E. Cook, M. Bernfeld, Radar Signals an Introduction to Theory and Applications (Academic, New York, 1967).

Cooke, C. R.

C. R. Cooke, “Laser Radar Systems, Some Examples,” Proc. Soc. Photo-Opt. Instrum. Eng. 128,103–107 (1977).

Darlington, S.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

Forrester, P. A.

P. A. Forrester, K. F. Hulme, “Review Laser Rangefinders,” Opt. Quantum Electron. Vol. B, 259–293 (1981).
[CrossRef]

Goodwin, F. E.

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, “Intracavity CdTe Modulators for CO2 Lasers,” IEEE J. Quantum Electron. QE-8, 171–179 (1972).

Hulme, K. F.

P. A. Forrester, K. F. Hulme, “Review Laser Rangefinders,” Opt. Quantum Electron. Vol. B, 259–293 (1981).
[CrossRef]

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
[CrossRef]

Kiefer, J. E.

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, “Intracavity CdTe Modulators for CO2 Lasers,” IEEE J. Quantum Electron. QE-8, 171–179 (1972).

Klauder, J. R.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

Nussmeier, T. A.

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, “Intracavity CdTe Modulators for CO2 Lasers,” IEEE J. Quantum Electron. QE-8, 171–179 (1972).

Pinson, J. T.

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
[CrossRef]

Price, A. C.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

VanLerberghe, A.

A. VanLerberghe, S. Avrillier, C. J. Borde, “High Stability CW Waveguide CO2 Laser for High Resolution Saturation Spectroscopy,” IEEE J. Quantum Electron. QE-14, 481–486 (1978).
[CrossRef]

Woodward, P. M.

P. M. Woodward, Probability and Information Theory, with Applications to Radar (Pergamon, Oxford, 1953).

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Bell Syst. Tech. J. (1)

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, “The Theory and Design of Chirp Radars,” Bell Syst. Tech. J. 34, 745–808 (1960).

IEEE J. Quantum Electron. (2)

A. VanLerberghe, S. Avrillier, C. J. Borde, “High Stability CW Waveguide CO2 Laser for High Resolution Saturation Spectroscopy,” IEEE J. Quantum Electron. QE-14, 481–486 (1978).
[CrossRef]

J. E. Kiefer, T. A. Nussmeier, F. E. Goodwin, “Intracavity CdTe Modulators for CO2 Lasers,” IEEE J. Quantum Electron. QE-8, 171–179 (1972).

Opt. Quantum Electron. (2)

P. A. Forrester, K. F. Hulme, “Review Laser Rangefinders,” Opt. Quantum Electron. Vol. B, 259–293 (1981).
[CrossRef]

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp Pulse Compression,” Opt. Quantum Electron. 13, 35–45 (1981).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

C. R. Cooke, “Laser Radar Systems, Some Examples,” Proc. Soc. Photo-Opt. Instrum. Eng. 128,103–107 (1977).

Other (3)

P. M. Woodward, Probability and Information Theory, with Applications to Radar (Pergamon, Oxford, 1953).

C. E. Cook, M. Bernfeld, Radar Signals an Introduction to Theory and Applications (Academic, New York, 1967).

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Heterodyne detection receiver.

Fig. 2
Fig. 2

Intracavity frequency modulation of transmitter laser and heterodyne detection.

Fig. 3
Fig. 3

Phase and frequency spectrum of the linear FM chirp signal.

Fig. 4
Fig. 4

Pulse compression of a square top chirp waveform. The envelope of the compressed pulse is the Fourier transform of the envelope of the incoming chirp waveform.

Fig. 5
Fig. 5

Block diagram of the experimental setup. The weighting filter was bypassed in some of the measurements for comparison.

Fig. 6
Fig. 6

Top trace, triangular waveform applied to the FM crystal. Bottom trace, rf pulses at the output of the SAW device. Only the positive slope SAW is used; hence only one compressed pulsed per cycle is seen.

Fig. 7
Fig. 7

Spectrum of the unweighted chirp. The tone on the right side is the pickup of the laser rf power supply.

Fig. 8
Fig. 8

Compressed pulse derived from the unweighted chirp shown on Fig. 7.

Fig. 9
Fig. 9

Graphic description of a linear delay mismatch.

Fig. 10
Fig. 10

Pulse widening due to the linear delay mismatch.

Fig. 11
Fig. 11

Quadratic phase distortion effects on the unweighted pulse with (a) Φ = π/2 and (b) Φ = 2π (courtesy of Klauder et al.).

Fig. 12
Fig. 12

Spectrum of the weighted chirp. The tone on the right side is the pickup of the laser rf power supply.

Fig. 13
Fig. 13

Compressed pulso derived from the weighted chirp shown in Fig. 12.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

E S ( t ) = A S ( t ) exp j [ ω S t + ϕ S ( t ) ] + c . c .,
E L ( t ) = A L ( t ) exp [ j ω L t ϕ L ( t ) ] + c . c .,
S n ( t ) = | E d | 2 ( t ) = A L A S ( t ) exp j [ ( ω S ω L ) t + ϕ S ( t ) ] + c . c .
Δ ν ν = Δ ν 2 l c ν fsr ,
Δ n = n 0 3 r 41 E 2 ,
Δ ν ν fsr = V ( λ n 0 3 r 41 · d l ) .
Δ ν = V V π ν fsr .
μ = [ Δ V Δ t ] V π ν fsr = constant .
ϕ h ( t ) = 2 π 0 t Δ ν ( t ) d t = 2 π μ t 2 2 .
S h ( t ) = A h ( t ) exp j [ ω h t + 2 π μ t 2 2 + c . c . ]
t d = 2 K ( ω w 1 ) + b .
β f ( ω ) = t d d ω = K ( ω ω 1 ) 2 + b ω + C 2 .
ω h ( 2 π ) μ T 2 ω ω h + ( 2 π ) μ T 2 , Δ ω = ( 2 π ) μ T .
g ( t ) = 2 μ sin [ 2 π μ t 2 ( T | t | ) ] 2 π μ t cos ω h t | t | < T .
P ˆ 0 P ˆ i = T / τ p = T Δ f ,
T τ p T Δ f .
f e = | μ μ | T 2 .
Φ e = π | μ μ | T 2 4 .
γ | μ μ | μ
Φ e = π γ ( T Δ f ) 4 ,
T = 2 . 1 μ s , compressed pulse width τ = 15 ns ; Δ f = 95 MHz ; T τ = 140 < T Δ f = 199 .
T Δ f ( T / n ) = 1 . 42 .
γ = 2 . 5 T Δ f 1 . 3 × 10 2 .
H ( ω ) = 1 + cos [ ( ω 0 ω ) 2 π Δ ω ] ,
T = 2 . 1 μ s , τ = 20 ns , Δ f = 95 MHz , Δ f 3 dB = 45 MHz ,
T τ = 105 < T Δ f = 199 .
T Δ f ( T / τ ) = 1 . 9 .
γ ( T Δ f ) 2 . 7 ,
γ = 2 . 7 ( T Δ f ) = 1 . 36 × 10 2 ,
Φ e = π γ ( T Δ f ) / 4 π 1 . 5 .
t r = 2 R / C ,
t d = ( f 0 f d ) / μ ,
t ( t ) = t r + t d .
t d ( ) = ( f 0 f d ) / μ ,
t ( ) = t r + t d ( ) = t r t d ( + ) .
t r = [ t ( + ) + t ( ) ] 2 , t d = [ t ( + ) t ( ) ] 2 .
δ f d = δ t d μ = δ V r c f laser .
δ V r = δ f d μ c f laser δ f d μ λ laser .
E t = h ( t ) A 0 exp j [ ω t t + μ t 2 2 ] + c . c .,
h ( t ) = 1 + cos [ t T ( 2 π ) ] .
H ( ω ) = 1 + cos [ ( ω 0 ω ) 2 π Δ ω ] ,

Metrics