Abstract

A CO2 laser has been FM chirp modulated by a CdTe intracavity modulator. A frequency deviation-of-100 MHz in 2 μs was attained in this fashion. Following heterodyne detection the chirped pulse was compressed to 15 ns using a surface acoustic wave compression filter. This corresponded to a compression factor of 130. The suppression of unwanted sidelobes with a weighting filter was demonstrated. We have explored the use of this technique for laser radar systems and described an electrooptically FM modulated CO2 waveguide laser with postdetection pulse compression by a surface acoustic wave compressive filter. To our knowledge this is the first report of the successful operation of this important system.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription