Abstract

Spatially resolved temperatures in a variety of low pressure flames of hydrogen and hydrocarbons burning with oxygen and nitrous oxide are determined from OH, NH, CH, and CN laser-induced fluorescence rotational excitation spectra. Systematic errors arising from spectral bias, time delay, and temporal sampling gate of the fluorescence detector are considered. In addition, we evaluate the errors arising from the influences of the optical depth and the rotational level dependence of the fluorescence quantum yield for each radical. These systematic errors cannot be determined through goodness-of-fit criteria and they are much larger than the statistical precision of the measurement. The severity of these problems is different for each radical; careful attention to the experimental design details for each species is necessary to obtain accurate LIF temperature measurements.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Engr. 22, 545–553 (1983); J. H. Bechtel, C. J. Dasch, R. Teets, “Combustion Research with Lasers” in Laser Applications, R. K. Erf, J. F. Ready, Eds. (Academic, New York, 1983); R. P. Lucht, “Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1986); D. R. Crosley, “Laser-Induced Fluorescence Measurement of Combustion Chemistry Intermediates,” High Temp. Mat. Proc. 7, 41–54 (1986); A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA1987).
  2. K. Kohse-Höinghaus, P. Koczar, T. Just, “Absolute Concentration Measurements of OH in Low Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1988), p. 1719–1727.
    [CrossRef]
  3. A. G. Gaydon, H. G. Wolfhard, Flames, Their Structure, Radiation and Temperature, Fourth Edition (Chapman & Hall, London, 1979).
  4. S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Studies,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1985), p. 1149–1176.
    [CrossRef]
  5. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-Resolved CH(A2Δ and B2Σ−) Laser-Induced Fluorescence in Low Pressure Hydrocarbon Flames,” Appl. Opt. 27, 3679–3689 (1988).
    [CrossRef] [PubMed]
  6. A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988).
    [CrossRef]
  7. G. Laufer, R. L. McKenzie, “Temperature Measurements in Hypersonic Air Flows using Laser-Induced O2-Fluorescence,” AIAA/NASA/AFWAL Conference on Sensors and Measurements Techniques for Aeronautical Applications, Atlanta, September1988.
  8. P. Andresen, A. Bath, S. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt. 27, 365–378 (1988).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, “Recent Advances in Laser Diagnostics for Temperature and Species Concentration in Combustion,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1471–1488.
    [CrossRef]
  10. W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982).
    [CrossRef]
  11. G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  12. C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986).
    [CrossRef]
  13. C. E. Moore, H. P. Broida, “CH in the Solar Spectrum,” J. Res. Natl. Bur. Stand. 63A, 19–53 (1959).
    [CrossRef]
  14. J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
    [CrossRef]
  15. M. B. Colket, “Spectroscopic Absorption Model for CN(X2Σ→B2Σ): Comparison of Experiments and Theory,” J. Quant. Spectrosc. Radiat. Transfer 31, 7–13 (1984).
    [CrossRef]
  16. G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973).
    [CrossRef]
  17. R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
    [CrossRef]
  18. B. M. Krupp, “A New Analysis of the A2Δ–X2Π System of CH,” Astrophys. J. 189, 389–397 (1974).
    [CrossRef]
  19. I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973).
    [CrossRef]
  20. K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand/Reinhold, New York, 1979).
  21. D. R. Crosley, R. K. Lengel, “Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
    [CrossRef]
  22. I. L. Chidsey, D. R. Crosley, “Calculated Rotational Transition Probabilities for the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
    [CrossRef]
  23. D. R. Crosley, “Semiquantitative Laser-Induced Fluorescence in Flames,” Combust. Flame, 00, 000 in press, 1989.
  24. G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1511–1520; D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27–34 (1982).
    [CrossRef]
  25. C. Chan, J. W. Daily, “Laser Excitation Dynamics of OH in Flames,” Appl. Opt. 19, 1357–1367 (1980); R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-Resolved Fluorescence Investigation of Rotational Transfer in A2Σ+(υ = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
    [CrossRef] [PubMed]
  26. N. L. Garland, D. R. Crosley, “Energy Transfer Processes in CH A2Δ and B2Σ− in an Atmospheric Pressure Flame,” Appl. Opt. 24, 4229–4237 (1985).
    [CrossRef] [PubMed]
  27. R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
    [CrossRef]
  28. R. G. Joklik, J. W. Daily, “LIF Study of CH A2Δ Collision Dynamics in a Low Pressure Oxy-Acetylene Flame,” Combust. Flame 69, 211–219 (1987).
    [CrossRef]
  29. (a) OH: K. R. German, “Direct Measurements of the Radiative Lifetimes of the A2Σ+(υ′ = 0) States of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975); J. Brzozowski, P. Erman, M. Lyyra, “Precision Estimates of the Predissociation Rates of the OH A2Σ+ State (υ ≤ 2),” Phys. Scr. 17, 507–511 (1978); I. S. McDermid, J. B. Laudenslager, “Radiative Lifetimes and Quenching Rate Coefficients for Directly Excited Rotational Levels of OH(A2Σ+,υ′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
    [CrossRef]
  30. (b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976).
    [CrossRef]
  31. (c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
    [CrossRef]
  32. (a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
    [CrossRef]
  33. (b) NH: N. L. Garland, D. R. Crosley, “Rotational-Level-Dependent Quenching of the A3Πi,υ′ = 0 State of NH,” J. Chem. Phys., 90, 3566–3573 (1989).
    [CrossRef]
  34. K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
    [CrossRef]
  35. K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.
  36. R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug.
    [CrossRef]
  37. R. K. Lengel, D. R. Crosley, “Energy Transfer in A2Σ+ OH. Π. Vibrational,” J. Chem. Phys. 68, 5309–0000 (1978); G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428–0000 (1983); R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational Energy Transfer and Quenching of OH(A2Σ+,υ′ = 1),” J. Phys. Chem., 92, 5710–5715, 1988.
    [CrossRef] [PubMed]
  38. K. H. Eberius, K. Hoyermann, H. G. Wagner, “Experimental and Mathematical Study of a Hydrogen-Oxygen Flame,” in Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA1971), pp. 713–721.
    [CrossRef]
  39. N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978).
    [CrossRef]

1989

(b) NH: N. L. Garland, D. R. Crosley, “Rotational-Level-Dependent Quenching of the A3Πi,υ′ = 0 State of NH,” J. Chem. Phys., 90, 3566–3573 (1989).
[CrossRef]

1988

1987

R. G. Joklik, J. W. Daily, “LIF Study of CH A2Δ Collision Dynamics in a Low Pressure Oxy-Acetylene Flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

1986

C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986).
[CrossRef]

1985

(a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

N. L. Garland, D. R. Crosley, “Energy Transfer Processes in CH A2Δ and B2Σ− in an Atmospheric Pressure Flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef] [PubMed]

1984

M. B. Colket, “Spectroscopic Absorption Model for CN(X2Σ→B2Σ): Comparison of Experiments and Theory,” J. Quant. Spectrosc. Radiat. Transfer 31, 7–13 (1984).
[CrossRef]

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
[CrossRef]

1983

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Engr. 22, 545–553 (1983); J. H. Bechtel, C. J. Dasch, R. Teets, “Combustion Research with Lasers” in Laser Applications, R. K. Erf, J. F. Ready, Eds. (Academic, New York, 1983); R. P. Lucht, “Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1986); D. R. Crosley, “Laser-Induced Fluorescence Measurement of Combustion Chemistry Intermediates,” High Temp. Mat. Proc. 7, 41–54 (1986); A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA1987).

1982

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982).
[CrossRef]

1980

1978

R. K. Lengel, D. R. Crosley, “Energy Transfer in A2Σ+ OH. Π. Vibrational,” J. Chem. Phys. 68, 5309–0000 (1978); G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428–0000 (1983); R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational Energy Transfer and Quenching of OH(A2Σ+,υ′ = 1),” J. Phys. Chem., 92, 5710–5715, 1988.
[CrossRef] [PubMed]

N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978).
[CrossRef]

1976

(b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976).
[CrossRef]

(c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

1975

(a) OH: K. R. German, “Direct Measurements of the Radiative Lifetimes of the A2Σ+(υ′ = 0) States of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975); J. Brzozowski, P. Erman, M. Lyyra, “Precision Estimates of the Predissociation Rates of the OH A2Σ+ State (υ ≤ 2),” Phys. Scr. 17, 507–511 (1978); I. S. McDermid, J. B. Laudenslager, “Radiative Lifetimes and Quenching Rate Coefficients for Directly Excited Rotational Levels of OH(A2Σ+,υ′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

1974

B. M. Krupp, “A New Analysis of the A2Δ–X2Π System of CH,” Astrophys. J. 189, 389–397 (1974).
[CrossRef]

1973

I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973).
[CrossRef]

G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973).
[CrossRef]

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

1962

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

1959

C. E. Moore, H. P. Broida, “CH in the Solar Spectrum,” J. Res. Natl. Bur. Stand. 63A, 19–53 (1959).
[CrossRef]

Albritton, D. L.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Anderson, W. R.

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982).
[CrossRef]

Andresen, P.

Bahadori, M. Y.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Studies,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1985), p. 1149–1176.
[CrossRef]

Bath, A.

Bernath, P. F.

C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986).
[CrossRef]

Botterud, I.

I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973).
[CrossRef]

Brazier, C. R.

C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986).
[CrossRef]

Broida, H. P.

C. E. Moore, H. P. Broida, “CH in the Solar Spectrum,” J. Res. Natl. Bur. Stand. 63A, 19–53 (1959).
[CrossRef]

Brown, J. M.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Brzozowski, J.

(c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

(b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976).
[CrossRef]

Bunker, P.

(c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
[CrossRef]

Chan, C.

Chidsey, I. L.

I. L. Chidsey, D. R. Crosley, “Calculated Rotational Transition Probabilities for the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

Colket, M. B.

M. B. Colket, “Spectroscopic Absorption Model for CN(X2Σ→B2Σ): Comparison of Experiments and Theory,” J. Quant. Spectrosc. Radiat. Transfer 31, 7–13 (1984).
[CrossRef]

Copeland, R. A.

K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-Resolved CH(A2Δ and B2Σ−) Laser-Induced Fluorescence in Low Pressure Hydrocarbon Flames,” Appl. Opt. 27, 3679–3689 (1988).
[CrossRef] [PubMed]

(a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug.
[CrossRef]

K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
[CrossRef]

Cottereau, M.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
[CrossRef]

Crosley, D. R.

(b) NH: N. L. Garland, D. R. Crosley, “Rotational-Level-Dependent Quenching of the A3Πi,υ′ = 0 State of NH,” J. Chem. Phys., 90, 3566–3573 (1989).
[CrossRef]

(a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

N. L. Garland, D. R. Crosley, “Energy Transfer Processes in CH A2Δ and B2Σ− in an Atmospheric Pressure Flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef] [PubMed]

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Engr. 22, 545–553 (1983); J. H. Bechtel, C. J. Dasch, R. Teets, “Combustion Research with Lasers” in Laser Applications, R. K. Erf, J. F. Ready, Eds. (Academic, New York, 1983); R. P. Lucht, “Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1986); D. R. Crosley, “Laser-Induced Fluorescence Measurement of Combustion Chemistry Intermediates,” High Temp. Mat. Proc. 7, 41–54 (1986); A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA1987).

I. L. Chidsey, D. R. Crosley, “Calculated Rotational Transition Probabilities for the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy Transfer in A2Σ+ OH. Π. Vibrational,” J. Chem. Phys. 68, 5309–0000 (1978); G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428–0000 (1983); R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational Energy Transfer and Quenching of OH(A2Σ+,υ′ = 1),” J. Phys. Chem., 92, 5710–5715, 1988.
[CrossRef] [PubMed]

D. R. Crosley, R. K. Lengel, “Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

D. R. Crosley, “Semiquantitative Laser-Induced Fluorescence in Flames,” Combust. Flame, 00, 000 in press, 1989.

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
[CrossRef]

K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.

G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1511–1520; D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug.
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Daily, J. W.

Decker, L. J.

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Duric, N.

N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978).
[CrossRef]

Dyer, M. J.

K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-Resolved CH(A2Δ and B2Σ−) Laser-Induced Fluorescence in Low Pressure Hydrocarbon Flames,” Appl. Opt. 27, 3679–3689 (1988).
[CrossRef] [PubMed]

(a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

Eberius, K. H.

K. H. Eberius, K. Hoyermann, H. G. Wagner, “Experimental and Mathematical Study of a Hydrogen-Oxygen Flame,” in Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA1971), pp. 713–721.
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Recent Advances in Laser Diagnostics for Temperature and Species Concentration in Combustion,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1471–1488.
[CrossRef]

Elander, N.

(c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Erman, P.

N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978).
[CrossRef]

(c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

(b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976).
[CrossRef]

Garland, N. L.

(b) NH: N. L. Garland, D. R. Crosley, “Rotational-Level-Dependent Quenching of the A3Πi,υ′ = 0 State of NH,” J. Chem. Phys., 90, 3566–3573 (1989).
[CrossRef]

N. L. Garland, D. R. Crosley, “Energy Transfer Processes in CH A2Δ and B2Σ− in an Atmospheric Pressure Flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef] [PubMed]

Gaydon, A. G.

A. G. Gaydon, H. G. Wolfhard, Flames, Their Structure, Radiation and Temperature, Fourth Edition (Chapman & Hall, London, 1979).

German, K. R.

(a) OH: K. R. German, “Direct Measurements of the Radiative Lifetimes of the A2Σ+(υ′ = 0) States of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975); J. Brzozowski, P. Erman, M. Lyyra, “Precision Estimates of the Predissociation Rates of the OH A2Σ+ State (υ ≤ 2),” Phys. Scr. 17, 507–511 (1978); I. S. McDermid, J. B. Laudenslager, “Radiative Lifetimes and Quenching Rate Coefficients for Directly Excited Rotational Levels of OH(A2Σ+,υ′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

Gröger, S.

Harrop, W. J.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Herzberg, G.

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand/Reinhold, New York, 1979).

Hougen, J. T.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Hoyermann, K.

K. H. Eberius, K. Hoyermann, H. G. Wagner, “Experimental and Mathematical Study of a Hydrogen-Oxygen Flame,” in Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA1971), pp. 713–721.
[CrossRef]

Huber, K. P.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand/Reinhold, New York, 1979).

Huwel, L.

A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988).
[CrossRef]

Jeffries, J. B.

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
[CrossRef]

Johns, J. W. C.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Joklik, R. G.

R. G. Joklik, J. W. Daily, “LIF Study of CH A2Δ Collision Dynamics in a Low Pressure Oxy-Acetylene Flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

Just, T.

K. Kohse-Höinghaus, P. Koczar, T. Just, “Absolute Concentration Measurements of OH in Low Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1988), p. 1719–1727.
[CrossRef]

Koczar, P.

K. Kohse-Höinghaus, P. Koczar, T. Just, “Absolute Concentration Measurements of OH in Low Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1988), p. 1719–1727.
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
[CrossRef]

K. Kohse-Höinghaus, P. Koczar, T. Just, “Absolute Concentration Measurements of OH in Low Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1988), p. 1719–1727.
[CrossRef]

Kopp, I.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Kostas, J.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Kotlar, A. J.

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982).
[CrossRef]

Krupp, B. M.

B. M. Krupp, “A New Analysis of the A2Δ–X2Π System of CH,” Astrophys. J. 189, 389–397 (1974).
[CrossRef]

Larsson, M.

N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978).
[CrossRef]

Laufer, G.

G. Laufer, R. L. McKenzie, “Temperature Measurements in Hypersonic Air Flows using Laser-Induced O2-Fluorescence,” AIAA/NASA/AFWAL Conference on Sensors and Measurements Techniques for Aeronautical Applications, Atlanta, September1988.

Lefebvre-Brion, H.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Lengel, R. K.

R. K. Lengel, D. R. Crosley, “Energy Transfer in A2Σ+ OH. Π. Vibrational,” J. Chem. Phys. 68, 5309–0000 (1978); G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428–0000 (1983); R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational Energy Transfer and Quenching of OH(A2Σ+,υ′ = 1),” J. Phys. Chem., 92, 5710–5715, 1988.
[CrossRef] [PubMed]

D. R. Crosley, R. K. Lengel, “Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

Linsky, J. L.

G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973).
[CrossRef]

Lofthus, A.

I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973).
[CrossRef]

Lülf, H. W.

McKenzie, R. L.

G. Laufer, R. L. McKenzie, “Temperature Measurements in Hypersonic Air Flows using Laser-Induced O2-Fluorescence,” AIAA/NASA/AFWAL Conference on Sensors and Measurements Techniques for Aeronautical Applications, Atlanta, September1988.

Meijer, G.

Merer, A. J.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Moore, C. E.

C. E. Moore, H. P. Broida, “CH in the Solar Spectrum,” J. Res. Natl. Bur. Stand. 63A, 19–53 (1959).
[CrossRef]

Mount, G. H.

G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973).
[CrossRef]

Penner, S. S.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Studies,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1985), p. 1149–1176.
[CrossRef]

Puechberty, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
[CrossRef]

Ram, R. S.

C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986).
[CrossRef]

Ramsay, D. A.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

Rensberger, K. J.

K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-Resolved CH(A2Δ and B2Σ−) Laser-Induced Fluorescence in Low Pressure Hydrocarbon Flames,” Appl. Opt. 27, 3679–3689 (1988).
[CrossRef] [PubMed]

K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.

R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug.
[CrossRef]

Schlüter, H.

A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988).
[CrossRef]

Schmeltekopf, A. L.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Shine, R. A.

G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973).
[CrossRef]

Smith, G. P.

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Engr. 22, 545–553 (1983); J. H. Bechtel, C. J. Dasch, R. Teets, “Combustion Research with Lasers” in Laser Applications, R. K. Erf, J. F. Ready, Eds. (Academic, New York, 1983); R. P. Lucht, “Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1986); D. R. Crosley, “Laser-Induced Fluorescence Measurement of Combustion Chemistry Intermediates,” High Temp. Mat. Proc. 7, 41–54 (1986); A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA1987).

G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1511–1520; D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
[CrossRef]

Smith, W. H.

(b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976).
[CrossRef]

Stepowski, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
[CrossRef]

ter Meulen, J. J.

Veseth, L.

I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973).
[CrossRef]

Voges, H.

A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988).
[CrossRef]

Wagner, H. G.

K. H. Eberius, K. Hoyermann, H. G. Wagner, “Experimental and Mathematical Study of a Hydrogen-Oxygen Flame,” in Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA1971), pp. 713–721.
[CrossRef]

Wang, C. P.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Studies,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1985), p. 1149–1176.
[CrossRef]

Wise, M. L.

R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug.
[CrossRef]

K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.

Wodtke, A. M.

A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988).
[CrossRef]

Wolfhard, H. G.

A. G. Gaydon, H. G. Wolfhard, Flames, Their Structure, Radiation and Temperature, Fourth Edition (Chapman & Hall, London, 1979).

Zare, R. N.

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Appl. Opt.

Astrophys. J.

(c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

B. M. Krupp, “A New Analysis of the A2Δ–X2Π System of CH,” Astrophys. J. 189, 389–397 (1974).
[CrossRef]

Combust. Flame

R. G. Joklik, J. W. Daily, “LIF Study of CH A2Δ Collision Dynamics in a Low Pressure Oxy-Acetylene Flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982).
[CrossRef]

J. Chem. Phys.

(a) OH: K. R. German, “Direct Measurements of the Radiative Lifetimes of the A2Σ+(υ′ = 0) States of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975); J. Brzozowski, P. Erman, M. Lyyra, “Precision Estimates of the Predissociation Rates of the OH A2Σ+ State (υ ≤ 2),” Phys. Scr. 17, 507–511 (1978); I. S. McDermid, J. B. Laudenslager, “Radiative Lifetimes and Quenching Rate Coefficients for Directly Excited Rotational Levels of OH(A2Σ+,υ′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

(b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976).
[CrossRef]

(a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

(b) NH: N. L. Garland, D. R. Crosley, “Rotational-Level-Dependent Quenching of the A3Πi,υ′ = 0 State of NH,” J. Chem. Phys., 90, 3566–3573 (1989).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy Transfer in A2Σ+ OH. Π. Vibrational,” J. Chem. Phys. 68, 5309–0000 (1978); G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428–0000 (1983); R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational Energy Transfer and Quenching of OH(A2Σ+,υ′ = 1),” J. Phys. Chem., 92, 5710–5715, 1988.
[CrossRef] [PubMed]

A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988).
[CrossRef]

J. Mol. Spectrosc.

C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986).
[CrossRef]

J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975).
[CrossRef]

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. B. Colket, “Spectroscopic Absorption Model for CN(X2Σ→B2Σ): Comparison of Experiments and Theory,” J. Quant. Spectrosc. Radiat. Transfer 31, 7–13 (1984).
[CrossRef]

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

I. L. Chidsey, D. R. Crosley, “Calculated Rotational Transition Probabilities for the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

J. Quant. Spectrosc. Transfer

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984).
[CrossRef]

J. Res. Natl. Bur. Stand.

C. E. Moore, H. P. Broida, “CH in the Solar Spectrum,” J. Res. Natl. Bur. Stand. 63A, 19–53 (1959).
[CrossRef]

Opt. Engr.

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Engr. 22, 545–553 (1983); J. H. Bechtel, C. J. Dasch, R. Teets, “Combustion Research with Lasers” in Laser Applications, R. K. Erf, J. F. Ready, Eds. (Academic, New York, 1983); R. P. Lucht, “Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1986); D. R. Crosley, “Laser-Induced Fluorescence Measurement of Combustion Chemistry Intermediates,” High Temp. Mat. Proc. 7, 41–54 (1986); A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA1987).

Phys. Scr.

N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978).
[CrossRef]

I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973).
[CrossRef]

Sol. Phys.

G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973).
[CrossRef]

Other

A. C. Eckbreth, “Recent Advances in Laser Diagnostics for Temperature and Species Concentration in Combustion,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1471–1488.
[CrossRef]

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand/Reinhold, New York, 1979).

D. R. Crosley, “Semiquantitative Laser-Induced Fluorescence in Flames,” Combust. Flame, 00, 000 in press, 1989.

G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1511–1520; D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

K. H. Eberius, K. Hoyermann, H. G. Wagner, “Experimental and Mathematical Study of a Hydrogen-Oxygen Flame,” in Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA1971), pp. 713–721.
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988.
[CrossRef]

K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.

R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug.
[CrossRef]

K. Kohse-Höinghaus, P. Koczar, T. Just, “Absolute Concentration Measurements of OH in Low Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1988), p. 1719–1727.
[CrossRef]

A. G. Gaydon, H. G. Wolfhard, Flames, Their Structure, Radiation and Temperature, Fourth Edition (Chapman & Hall, London, 1979).

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Studies,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1985), p. 1149–1176.
[CrossRef]

G. Laufer, R. L. McKenzie, “Temperature Measurements in Hypersonic Air Flows using Laser-Induced O2-Fluorescence,” AIAA/NASA/AFWAL Conference on Sensors and Measurements Techniques for Aeronautical Applications, Atlanta, September1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental LIF rotational excitation spectra of the Q-head region of the NH(A3ΠiX3Σ) transition for a 13.8-Torr, ϕ = 1.04, C2H2/N2O flame. The spectra are obtained (top to bottom) at 1.1, 4.0, and 7.3 mm above the burner and are fit to temperatures of 1050, 2250, and 2670 K, respectively. The bottom trace is the residual of the fit at 2670 K. The transitions are labeled by the ground state total angular momentum quantum number J.

Fig. 2
Fig. 2

Experimental LIF spectrum of part of the CH(A2Δ–X2Π) transition in a 6.8-Torr, ϕ = 1, C3H8/O2 flame. A fit to this spectrum yields a temperature of 1900 K. The residual to the fit is shown in the lower trace. The rotational transitions are relabeled to correspond to the notation suggested by Ref. 14.

Fig. 3
Fig. 3

Experimental LIF spectrum of part of the CN(B2Σ+X2Σ+) transition in a 15-Torr, ϕ = 1.33, C3H8/N2O flame. A fit to this spectrum yields a temperature of 2575 K. The residual to the fit is shown in the lower trace.

Fig. 4
Fig. 4

Synthesized OH, NH, CN, and CH emission spectra at 2500 K. At this temperature, the transitions extend over many nanometers. The y-axis scale is different for each band shown.

Fig. 5
Fig. 5

Boltzmann plot of the OH(A2Σ+X2Πi) normalized intensity divided by the line strength and degeneracy vs. rotational energy for a 7.2-Torr, ϕ = 1, H2/N2O flame, in which the spectral bandpass preferentially detects the high rotational levels. The line corresponds to a temperature of 3770 K. The correct temperature of 2300 K is obtained by using the proper bandpass.

Fig. 6
Fig. 6

OH(A2Σ+X2Πi) LIF spectrum (middle) and absorption spectrum (top) in the R-branch region in a 7.2-Torr, ϕ = 1, H2/N2O flame. The LIF spectrum gives a temperature of 2250 K. The absorption spectrum gives a temperature of 1990 K, which is a concentration weighted average over the flame and its cooler boundary. The bottom trace is the residual to the fit for the LIF spectrum.

Fig. 7
Fig. 7

Temperature profiles for a 7.2-Torr, ϕ = 1, H2/N2O flame (top) and H2/O2 flame (bottom). The triangles show the OH temperature and the circles the NH temperature in the H2/N2O flame. The boxes show the OH temperature in the H2/O2 flame.

Fig. 8
Fig. 8

Temperature and LIF signal profiles for a 14-Torr, ϕ = 1.33, C3H8/N2O flame. The signal profiles are for CN, CH, and NH (top to bottom). The open boxes, diamonds, and solid boxes correspond to temperatures measured using CN(B2Σ+X2Σ+), CH(A2Δ–X2Π), and NH(A3ΠiX3Σ) rotational excitation spectra, respectively.

Fig. 9
Fig. 9

Temperature and CH profiles for a 6.7-Torr, ϕ = 0.96, C3H8/O2 flame. The boxes and circles show temperatures determined from CH(A2Δ–X2n) and CH(B2Σ-X2Π) rotational excitation spectra, respectively. The bottom curve is the relative CH radical concentration. The line through the CH profile is synthesized from the parametrization data in Ref. 5.

Tables (1)

Tables Icon

Table I Data for Rotational Excitation Scans

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I i = G Φ f B f i N i ,
T corrected = T observed ( 1 γ T observed ) 1 .

Metrics